sotanishy's code snippets for competitive programming
#include "data-structure/cht/offline_deletable_convex_hull_trick.hpp"
直線の多重集合に対する以下のクエリをオフラインで処理する:
Undo 可能 Li Chao tree を用いて,offline dynamic connectivity の要領でこれを実現する.
空間計算量: $O(q\log q)$
void add(T a, T b)
void erase(T a, T b)
void get(T x)
vector<T> run()
get
の結果を返す#pragma once
#include <bit>
#include <cassert>
#include <map>
#include <utility>
#include <vector>
#include "undoable_li_chao_tree.hpp"
template <typename T>
class OfflineDeletableConvexHullTrick {
public:
void insert(T a, T b) { open.insert({{a, b}, now++}); }
void erase(T a, T b) {
auto it = open.find({a, b});
assert(it != open.end());
closed.emplace_back(a, b, it->second, now++);
open.erase(it);
}
void get(T x) {
query[now++] = x;
xs.push_back(x);
}
std::vector<T> run() {
if (xs.empty()) return {};
// erase lines
for (auto [line, s] : open) {
closed.emplace_back(line.first, line.second, s, now);
}
// build a segment tree
int size = std::bit_ceil((unsigned int)now);
std::vector<std::vector<std::pair<T, T>>> lines(2 * size);
for (auto [a, b, s, t] : closed) {
for (s += size, t += size; s < t; s >>= 1, t >>= 1) {
if (s & 1) lines[s++].emplace_back(a, b);
if (t & 1) lines[--t].emplace_back(a, b);
}
}
// handle queries
UndoableLiChaoTree<T> lct(xs);
std::vector<T> ret;
auto dfs = [&](const auto& dfs, int k) -> void {
for (auto [a, b] : lines[k]) {
lct.add(a, b);
}
if (k < size) {
dfs(dfs, 2 * k);
dfs(dfs, 2 * k + 1);
} else if (k < size + now) {
if (query.contains(k - size)) {
ret.push_back(lct.get(query[k - size]));
}
}
for (int i = 0; i < (int)lines[k].size(); ++i) {
lct.undo();
}
};
dfs(dfs, 1);
return ret;
}
private:
int now = 0;
std::multimap<std::pair<T, T>, int> open;
std::vector<std::tuple<T, T, int, int>> closed;
std::map<int, T> query;
std::vector<T> xs;
};
#line 2 "data-structure/cht/offline_deletable_convex_hull_trick.hpp"
#include <bit>
#include <cassert>
#include <map>
#include <utility>
#include <vector>
#line 2 "data-structure/cht/undoable_li_chao_tree.hpp"
#include <algorithm>
#line 5 "data-structure/cht/undoable_li_chao_tree.hpp"
#include <limits>
#line 8 "data-structure/cht/undoable_li_chao_tree.hpp"
/**
* @brief Undoable Li Chao Tree
*/
template <typename T>
class UndoableLiChaoTree {
public:
UndoableLiChaoTree() = default;
explicit UndoableLiChaoTree(const std::vector<T>& vs) : xs(vs) {
std::ranges::sort(xs);
xs.erase(std::ranges::unique(xs).begin(), xs.end());
size = std::bit_ceil(xs.size());
node.resize(2 * size, {0, INF});
while ((int)xs.size() <= size) xs.push_back(xs.back() + 1);
}
void add(T a, T b) {
history.emplace_back(-1, Line(0, 0));
Line line(a, b);
int k = 1, l = 0, r = size;
while (true) {
int m = std::midpoint(l, r);
bool left = line(xs[l]) < node[k](xs[l]);
bool mid = line(xs[m]) < node[k](xs[m]);
bool right = line(xs[r]) < node[k](xs[r]);
if (!left && !right) break;
if (left && right) {
history.emplace_back(k, node[k]);
node[k] = line;
break;
}
if (mid) {
history.emplace_back(k, node[k]);
std::swap(node[k], line);
}
if (r - l == 1) break;
if (left != mid) {
k = 2 * k;
r = m;
} else {
k = 2 * k + 1;
l = m;
}
}
}
T get(T x) const {
int k = std::ranges::lower_bound(xs, x) - xs.begin();
k += size;
T res = node[k](x);
while (k >>= 1) res = std::min(res, node[k](x));
return res;
}
void undo() {
assert(!history.empty());
while (true) {
auto [k, line] = history.back();
history.pop_back();
if (k == -1) break;
node[k] = line;
}
}
private:
struct Line {
T a, b;
Line(T a, T b) : a(a), b(b) {}
T operator()(T x) const { return a * x + b; }
};
static constexpr T INF = std::numeric_limits<T>::max();
int size;
std::vector<T> xs;
std::vector<Line> node;
std::vector<std::pair<int, Line>> history;
};
#line 9 "data-structure/cht/offline_deletable_convex_hull_trick.hpp"
template <typename T>
class OfflineDeletableConvexHullTrick {
public:
void insert(T a, T b) { open.insert({{a, b}, now++}); }
void erase(T a, T b) {
auto it = open.find({a, b});
assert(it != open.end());
closed.emplace_back(a, b, it->second, now++);
open.erase(it);
}
void get(T x) {
query[now++] = x;
xs.push_back(x);
}
std::vector<T> run() {
if (xs.empty()) return {};
// erase lines
for (auto [line, s] : open) {
closed.emplace_back(line.first, line.second, s, now);
}
// build a segment tree
int size = std::bit_ceil((unsigned int)now);
std::vector<std::vector<std::pair<T, T>>> lines(2 * size);
for (auto [a, b, s, t] : closed) {
for (s += size, t += size; s < t; s >>= 1, t >>= 1) {
if (s & 1) lines[s++].emplace_back(a, b);
if (t & 1) lines[--t].emplace_back(a, b);
}
}
// handle queries
UndoableLiChaoTree<T> lct(xs);
std::vector<T> ret;
auto dfs = [&](const auto& dfs, int k) -> void {
for (auto [a, b] : lines[k]) {
lct.add(a, b);
}
if (k < size) {
dfs(dfs, 2 * k);
dfs(dfs, 2 * k + 1);
} else if (k < size + now) {
if (query.contains(k - size)) {
ret.push_back(lct.get(query[k - size]));
}
}
for (int i = 0; i < (int)lines[k].size(); ++i) {
lct.undo();
}
};
dfs(dfs, 1);
return ret;
}
private:
int now = 0;
std::multimap<std::pair<T, T>, int> open;
std::vector<std::tuple<T, T, int, int>> closed;
std::map<int, T> query;
std::vector<T> xs;
};