sotanishy's code snippets for competitive programming
#include "data-structure/segtree/sortable_segment_tree.hpp"
通常のセグメント木の機能に加えて,区間ソートクエリを処理することができる.ソートされた区間を,キーを添字とする動的セグメント木で管理することでこれを実現する.キーは distinct な 64-bit 整数である.
空間計算量: $O(n\log m)$, $m$ はキーの最大値
SortableSegmentTree(long long max_key, vector<pair<long long, T>> kv)
void update(int k, long long key, T val)
key
に,値を val
に更新するT fold(int l, int r)
void sort(int l, int r, bool descending = false)
#pragma once
#include <memory>
#include <numeric>
#include <set>
#include <utility>
#include <vector>
#include "segment_tree.hpp"
template <typename M>
class SortableSegmentTree {
using T = M::T;
public:
SortableSegmentTree() = default;
explicit SortableSegmentTree(long long max_key,
const std::vector<std::pair<long long, T>>& kv)
: n(kv.size()), max_key(max_key), st_all(n), st_sorted(n), rev(n) {
for (int k = 0; k < n; ++k) {
auto [key, val] = kv[k];
st_sorted[k] = std::make_unique<Node>();
st_sorted[k]->update(key, val, 0, max_key);
st_all.update(k, val);
left.insert(k);
}
left.insert(n);
}
void update(int k, long long key, const T& val) {
split(k), split(k + 1);
st_sorted[k] = std::make_unique<Node>();
st_sorted[k]->update(key, val, 0, max_key);
st_all.update(k, val);
}
T fold(int l, int r) {
split(l), split(r);
return st_all.fold(l, r);
}
void sort(int l, int r, bool descending = false) {
if (r - l <= 1) return;
split(l), split(r);
auto it = ++left.find(l);
while (it != left.end() && *it < r) {
st_sorted[l] =
join(std::move(st_sorted[l]), std::move(st_sorted[*it]));
st_all.update(*it, M::id());
rev[*it] = false;
it = left.erase(it);
}
if (st_sorted[l]) {
st_all.update(l, !descending ? st_sorted[l]->val_forward
: st_sorted[l]->val_backward);
rev[l] = descending;
}
}
private:
struct Node;
using node_ptr = std::unique_ptr<Node>;
struct Node {
int sz;
T val_forward, val_backward;
node_ptr left, right;
Node()
: sz(0),
val_forward(M::id()),
val_backward(M::id()),
left(nullptr),
right(nullptr) {}
void recalc() {
int sl = left ? left->sz : 0;
int sr = right ? right->sz : 0;
sz = sl + sr;
T vl_forward = left ? left->val_forward : M::id();
T vr_forward = right ? right->val_forward : M::id();
val_forward = M::op(vl_forward, vr_forward);
T vl_backward = left ? left->val_backward : M::id();
T vr_backward = right ? right->val_backward : M::id();
val_backward = M::op(vr_backward, vl_backward);
}
void update(long long key, const T& x, long long l, long long r) {
if (r - l == 1) {
sz = 1;
val_forward = val_backward = x;
return;
}
long long m = std::midpoint(l, r);
if (key < m) {
if (!left) left = std::make_unique<Node>();
left->update(key, x, l, m);
} else {
if (!right) right = std::make_unique<Node>();
right->update(key, x, m, r);
}
recalc();
}
};
static std::pair<node_ptr, node_ptr> split(node_ptr t, int k) {
if (k == 0) return {nullptr, std::move(t)};
if (k == t->sz) return {std::move(t), nullptr};
int szl = t->left ? t->left->sz : 0;
auto t2 = std::make_unique<Node>();
if (k < szl) {
std::tie(t2->left, t->left) = split(std::move(t->left), k);
std::swap(t, t2);
} else {
std::tie(t->right, t2->right) = split(std::move(t->right), k - szl);
}
t->recalc(), t2->recalc();
return {std::move(t), std::move(t2)};
}
static node_ptr join(node_ptr t1, node_ptr t2) {
if (!t1) return t2;
if (!t2) return t1;
t1->left = join(std::move(t1->left), std::move(t2->left));
t1->right = join(std::move(t1->right), std::move(t2->right));
t1->recalc();
return t1;
}
int n;
long long max_key;
std::set<int> left;
SegmentTree<M> st_all;
std::vector<node_ptr> st_sorted;
std::vector<bool> rev;
void split(int k) {
int l = *--left.upper_bound(k);
if (l == k) return;
if (!rev[l]) {
std::tie(st_sorted[l], st_sorted[k]) =
split(std::move(st_sorted[l]), k - l);
} else {
std::tie(st_sorted[k], st_sorted[l]) =
split(std::move(st_sorted[l]), l + st_sorted[l]->sz - k);
rev[k] = true;
}
left.insert(k);
if (st_sorted[l]) {
st_all.update(l, !rev[l] ? st_sorted[l]->val_forward
: st_sorted[l]->val_backward);
}
if (st_sorted[k]) {
st_all.update(k, !rev[k] ? st_sorted[k]->val_forward
: st_sorted[k]->val_backward);
}
}
};
#line 2 "data-structure/segtree/sortable_segment_tree.hpp"
#include <memory>
#include <numeric>
#include <set>
#include <utility>
#include <vector>
#line 2 "data-structure/segtree/segment_tree.hpp"
#include <algorithm>
#include <bit>
#line 5 "data-structure/segtree/segment_tree.hpp"
template <typename M>
class SegmentTree {
using T = M::T;
public:
SegmentTree() = default;
explicit SegmentTree(int n) : SegmentTree(std::vector<T>(n, M::id())) {}
explicit SegmentTree(const std::vector<T>& v)
: size(std::bit_ceil(v.size())), node(2 * size, M::id()) {
std::ranges::copy(v, node.begin() + size);
for (int i = size - 1; i > 0; --i) {
node[i] = M::op(node[2 * i], node[2 * i + 1]);
}
}
T operator[](int k) const { return node[k + size]; }
void update(int k, const T& x) {
k += size;
node[k] = x;
while (k >>= 1) node[k] = M::op(node[2 * k], node[2 * k + 1]);
}
T fold(int l, int r) const {
T vl = M::id(), vr = M::id();
for (l += size, r += size; l < r; l >>= 1, r >>= 1) {
if (l & 1) vl = M::op(vl, node[l++]);
if (r & 1) vr = M::op(node[--r], vr);
}
return M::op(vl, vr);
}
template <typename F>
int find_first(int l, F cond) const {
T v = M::id();
for (l += size; l > 0; l >>= 1) {
if (l & 1) {
T nv = M::op(v, node[l]);
if (cond(nv)) {
while (l < size) {
nv = M::op(v, node[2 * l]);
if (cond(nv)) {
l = 2 * l;
} else {
v = nv, l = 2 * l + 1;
}
}
return l + 1 - size;
}
v = nv;
++l;
}
}
return -1;
}
template <typename F>
int find_last(int r, F cond) const {
T v = M::id();
for (r += size; r > 0; r >>= 1) {
if (r & 1) {
--r;
T nv = M::op(node[r], v);
if (cond(nv)) {
while (r < size) {
nv = M::op(node[2 * r + 1], v);
if (cond(nv)) {
r = 2 * r + 1;
} else {
v = nv, r = 2 * r;
}
}
return r - size;
}
v = nv;
}
}
return -1;
}
private:
int size;
std::vector<T> node;
};
#line 9 "data-structure/segtree/sortable_segment_tree.hpp"
template <typename M>
class SortableSegmentTree {
using T = M::T;
public:
SortableSegmentTree() = default;
explicit SortableSegmentTree(long long max_key,
const std::vector<std::pair<long long, T>>& kv)
: n(kv.size()), max_key(max_key), st_all(n), st_sorted(n), rev(n) {
for (int k = 0; k < n; ++k) {
auto [key, val] = kv[k];
st_sorted[k] = std::make_unique<Node>();
st_sorted[k]->update(key, val, 0, max_key);
st_all.update(k, val);
left.insert(k);
}
left.insert(n);
}
void update(int k, long long key, const T& val) {
split(k), split(k + 1);
st_sorted[k] = std::make_unique<Node>();
st_sorted[k]->update(key, val, 0, max_key);
st_all.update(k, val);
}
T fold(int l, int r) {
split(l), split(r);
return st_all.fold(l, r);
}
void sort(int l, int r, bool descending = false) {
if (r - l <= 1) return;
split(l), split(r);
auto it = ++left.find(l);
while (it != left.end() && *it < r) {
st_sorted[l] =
join(std::move(st_sorted[l]), std::move(st_sorted[*it]));
st_all.update(*it, M::id());
rev[*it] = false;
it = left.erase(it);
}
if (st_sorted[l]) {
st_all.update(l, !descending ? st_sorted[l]->val_forward
: st_sorted[l]->val_backward);
rev[l] = descending;
}
}
private:
struct Node;
using node_ptr = std::unique_ptr<Node>;
struct Node {
int sz;
T val_forward, val_backward;
node_ptr left, right;
Node()
: sz(0),
val_forward(M::id()),
val_backward(M::id()),
left(nullptr),
right(nullptr) {}
void recalc() {
int sl = left ? left->sz : 0;
int sr = right ? right->sz : 0;
sz = sl + sr;
T vl_forward = left ? left->val_forward : M::id();
T vr_forward = right ? right->val_forward : M::id();
val_forward = M::op(vl_forward, vr_forward);
T vl_backward = left ? left->val_backward : M::id();
T vr_backward = right ? right->val_backward : M::id();
val_backward = M::op(vr_backward, vl_backward);
}
void update(long long key, const T& x, long long l, long long r) {
if (r - l == 1) {
sz = 1;
val_forward = val_backward = x;
return;
}
long long m = std::midpoint(l, r);
if (key < m) {
if (!left) left = std::make_unique<Node>();
left->update(key, x, l, m);
} else {
if (!right) right = std::make_unique<Node>();
right->update(key, x, m, r);
}
recalc();
}
};
static std::pair<node_ptr, node_ptr> split(node_ptr t, int k) {
if (k == 0) return {nullptr, std::move(t)};
if (k == t->sz) return {std::move(t), nullptr};
int szl = t->left ? t->left->sz : 0;
auto t2 = std::make_unique<Node>();
if (k < szl) {
std::tie(t2->left, t->left) = split(std::move(t->left), k);
std::swap(t, t2);
} else {
std::tie(t->right, t2->right) = split(std::move(t->right), k - szl);
}
t->recalc(), t2->recalc();
return {std::move(t), std::move(t2)};
}
static node_ptr join(node_ptr t1, node_ptr t2) {
if (!t1) return t2;
if (!t2) return t1;
t1->left = join(std::move(t1->left), std::move(t2->left));
t1->right = join(std::move(t1->right), std::move(t2->right));
t1->recalc();
return t1;
}
int n;
long long max_key;
std::set<int> left;
SegmentTree<M> st_all;
std::vector<node_ptr> st_sorted;
std::vector<bool> rev;
void split(int k) {
int l = *--left.upper_bound(k);
if (l == k) return;
if (!rev[l]) {
std::tie(st_sorted[l], st_sorted[k]) =
split(std::move(st_sorted[l]), k - l);
} else {
std::tie(st_sorted[k], st_sorted[l]) =
split(std::move(st_sorted[l]), l + st_sorted[l]->sz - k);
rev[k] = true;
}
left.insert(k);
if (st_sorted[l]) {
st_all.update(l, !rev[l] ? st_sorted[l]->val_forward
: st_sorted[l]->val_backward);
}
if (st_sorted[k]) {
st_all.update(k, !rev[k] ? st_sorted[k]->val_forward
: st_sorted[k]->val_backward);
}
}
};