sotanishy's code snippets for competitive programming
#include "graph/dominator_tree.hpp"
有向グラフ $G$ において,頂点 $v$ が頂点 $w$ の dominator であるとは,$G$ における任意の $s-w$ パス ($s$ は source vertex) が $v$ を通ることである.
$v$ が $w$ の immediate dominator であるとは,$v$ が $w$ の dominator であり,かつ $v$ が $w$ の任意の dominator $u$ を dominate しないことである.これは $w$ に対して一意に定まる.
$G$ の dominator tree は,$G$ で $v$ が $w$ の immediate dominator であるときかつそのときに限り有向辺 $(v, w)$ が存在するような有向木である.
vector<int> dominator_tree(vector<vector<int>> G, int s)
-1
を返す.$s$ の immediate dominator は $s$ とする.#pragma once
#include <algorithm>
#include <numeric>
#include <vector>
std::vector<int> dominator_tree(const std::vector<std::vector<int>>& G, int s) {
const int n = G.size();
// label nodes with the arrival times of a dfs
std::vector<int> sdom(n, -1), par(n, -1), vs;
vs.reserve(n);
int k = 0;
auto dfs = [&](auto& dfs, int v) -> void {
sdom[v] = k++;
vs.push_back(v);
for (int c : G[v]) {
if (sdom[c] == -1) {
par[c] = v;
dfs(dfs, c);
}
}
};
dfs(dfs, s);
std::vector<std::vector<int>> G_rev(n);
for (int u = 0; u < n; ++u) {
if (sdom[u] == -1) continue;
for (int v : G[u]) {
G_rev[v].push_back(u);
}
}
// union find with path compression
std::vector<int> dsu(n), val(n);
std::iota(dsu.begin(), dsu.end(), 0);
std::iota(val.begin(), val.end(), 0);
auto unite = [&](int u, int v) { // make u the parent of v
dsu[v] = u;
};
auto find = [&](auto& find, int v) -> int {
if (v == dsu[v]) return v;
int r = find(find, dsu[v]);
if (sdom[val[v]] > sdom[val[dsu[v]]]) {
val[v] = val[dsu[v]];
}
return dsu[v] = r;
};
auto eval = [&](int v) { // return the ancestor of v with minimum sdom
find(find, v);
return val[v];
};
// calculate sdom
std::vector<int> us(n);
std::vector<std::vector<int>> bucket(n);
for (int i = k - 1; i > 0; --i) {
int w = vs[i];
for (int v : G_rev[w]) {
sdom[w] = std::min(sdom[w], sdom[eval(v)]);
}
bucket[vs[sdom[w]]].push_back(w);
for (int v : bucket[par[w]]) {
us[v] = eval(v);
}
bucket[par[w]].clear();
unite(par[w], w);
}
// calculate idom
std::vector<int> idom(n, -1);
idom[s] = sdom[s];
for (int i = 1; i < k; ++i) {
int w = vs[i], u = us[w];
idom[w] = (sdom[w] == sdom[u] ? sdom[w] : idom[u]);
}
for (int v : vs) {
idom[v] = vs[idom[v]];
}
return idom;
}
#line 2 "graph/dominator_tree.hpp"
#include <algorithm>
#include <numeric>
#include <vector>
std::vector<int> dominator_tree(const std::vector<std::vector<int>>& G, int s) {
const int n = G.size();
// label nodes with the arrival times of a dfs
std::vector<int> sdom(n, -1), par(n, -1), vs;
vs.reserve(n);
int k = 0;
auto dfs = [&](auto& dfs, int v) -> void {
sdom[v] = k++;
vs.push_back(v);
for (int c : G[v]) {
if (sdom[c] == -1) {
par[c] = v;
dfs(dfs, c);
}
}
};
dfs(dfs, s);
std::vector<std::vector<int>> G_rev(n);
for (int u = 0; u < n; ++u) {
if (sdom[u] == -1) continue;
for (int v : G[u]) {
G_rev[v].push_back(u);
}
}
// union find with path compression
std::vector<int> dsu(n), val(n);
std::iota(dsu.begin(), dsu.end(), 0);
std::iota(val.begin(), val.end(), 0);
auto unite = [&](int u, int v) { // make u the parent of v
dsu[v] = u;
};
auto find = [&](auto& find, int v) -> int {
if (v == dsu[v]) return v;
int r = find(find, dsu[v]);
if (sdom[val[v]] > sdom[val[dsu[v]]]) {
val[v] = val[dsu[v]];
}
return dsu[v] = r;
};
auto eval = [&](int v) { // return the ancestor of v with minimum sdom
find(find, v);
return val[v];
};
// calculate sdom
std::vector<int> us(n);
std::vector<std::vector<int>> bucket(n);
for (int i = k - 1; i > 0; --i) {
int w = vs[i];
for (int v : G_rev[w]) {
sdom[w] = std::min(sdom[w], sdom[eval(v)]);
}
bucket[vs[sdom[w]]].push_back(w);
for (int v : bucket[par[w]]) {
us[v] = eval(v);
}
bucket[par[w]].clear();
unite(par[w], w);
}
// calculate idom
std::vector<int> idom(n, -1);
idom[s] = sdom[s];
for (int i = 1; i < k; ++i) {
int w = vs[i], u = us[w];
idom[w] = (sdom[w] == sdom[u] ? sdom[w] : idom[u]);
}
for (int v : vs) {
idom[v] = vs[idom[v]];
}
return idom;
}