sotanishy's code snippets for competitive programming
#include "graph/manhattan_mst.hpp"
2次元平面上に点が与えられ,各点の間にそのマンハッタン距離の重みを持つ辺が張られているとき,最小全域木を計算する.
vector<T, Edge<T>> manhattan_mst(vector<pair<T, T>> pts)
pts
の点からなるグラフの最小全域木を求める#pragma once
#include <algorithm>
#include <limits>
#include <vector>
#include "../data-structure/segtree/segment_tree.hpp"
#include "../graph/mst.hpp"
template <typename U>
struct MinMonoid {
using T = std::pair<U, int>;
static T id() { return {std::numeric_limits<U>::max(), -1}; }
static T op(T a, T b) { return std::min(a, b); }
};
template <typename T>
std::pair<T, std::vector<std::pair<int, int>>> manhattan_mst(
std::vector<std::pair<T, T>> pts) {
std::vector<int> idx(pts.size());
std::iota(idx.begin(), idx.end(), 0);
std::vector<std::tuple<int, int, T>> edges;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 2; ++j) {
for (int k = 0; k < 2; ++k) {
// sort by y-x asc then by y desc
std::ranges::sort(idx, {}, [&](int i) {
auto [x, y] = pts[i];
return std::make_tuple(y - x, -y, i);
});
// compress y
std::vector<T> cs;
cs.reserve(pts.size());
for (auto [x, y] : pts) cs.push_back(y);
std::ranges::sort(cs);
cs.erase(std::ranges::unique(cs).begin(), cs.end());
// sweep
SegmentTree<MinMonoid<T>> st(cs.size());
for (int i : idx) {
auto [x, y] = pts[i];
int k = std::ranges::lower_bound(cs, y) - cs.begin();
auto [d, j] = st.fold(k, cs.size());
if (j != -1) {
edges.push_back({i, j, d - (x + y)});
}
st.update(k, {x + y, i});
}
for (auto& p : pts) std::swap(p.first, p.second);
}
for (auto& p : pts) p.first *= -1;
}
for (auto& p : pts) p.second *= -1;
}
auto [weight, mst_edges] = kruskal(edges, pts.size());
std::vector<std::pair<int, int>> ret(mst_edges.size());
std::ranges::transform(mst_edges, ret.begin(), [&](const auto& e) {
return std::make_pair(std::get<0>(e), std::get<1>(e));
});
return {weight, ret};
}
#line 2 "graph/manhattan_mst.hpp"
#include <algorithm>
#include <limits>
#include <vector>
#line 3 "data-structure/segtree/segment_tree.hpp"
#include <bit>
#line 5 "data-structure/segtree/segment_tree.hpp"
template <typename M>
class SegmentTree {
using T = M::T;
public:
SegmentTree() = default;
explicit SegmentTree(int n) : SegmentTree(std::vector<T>(n, M::id())) {}
explicit SegmentTree(const std::vector<T>& v)
: size(std::bit_ceil(v.size())), node(2 * size, M::id()) {
std::ranges::copy(v, node.begin() + size);
for (int i = size - 1; i > 0; --i) {
node[i] = M::op(node[2 * i], node[2 * i + 1]);
}
}
T operator[](int k) const { return node[k + size]; }
void update(int k, const T& x) {
k += size;
node[k] = x;
while (k >>= 1) node[k] = M::op(node[2 * k], node[2 * k + 1]);
}
T fold(int l, int r) const {
T vl = M::id(), vr = M::id();
for (l += size, r += size; l < r; l >>= 1, r >>= 1) {
if (l & 1) vl = M::op(vl, node[l++]);
if (r & 1) vr = M::op(node[--r], vr);
}
return M::op(vl, vr);
}
template <typename F>
int find_first(int l, F cond) const {
T v = M::id();
for (l += size; l > 0; l >>= 1) {
if (l & 1) {
T nv = M::op(v, node[l]);
if (cond(nv)) {
while (l < size) {
nv = M::op(v, node[2 * l]);
if (cond(nv)) {
l = 2 * l;
} else {
v = nv, l = 2 * l + 1;
}
}
return l + 1 - size;
}
v = nv;
++l;
}
}
return -1;
}
template <typename F>
int find_last(int r, F cond) const {
T v = M::id();
for (r += size; r > 0; r >>= 1) {
if (r & 1) {
--r;
T nv = M::op(node[r], v);
if (cond(nv)) {
while (r < size) {
nv = M::op(node[2 * r + 1], v);
if (cond(nv)) {
r = 2 * r + 1;
} else {
v = nv, r = 2 * r;
}
}
return r - size;
}
v = nv;
}
}
return -1;
}
private:
int size;
std::vector<T> node;
};
#line 3 "graph/mst.hpp"
#include <queue>
#include <utility>
#line 6 "graph/mst.hpp"
#line 4 "data-structure/unionfind/union_find.hpp"
class UnionFind {
public:
UnionFind() = default;
explicit UnionFind(int n) : data(n, -1) {}
int find(int x) {
if (data[x] < 0) return x;
return data[x] = find(data[x]);
}
void unite(int x, int y) {
x = find(x);
y = find(y);
if (x == y) return;
if (data[x] > data[y]) std::swap(x, y);
data[x] += data[y];
data[y] = x;
}
bool same(int x, int y) { return find(x) == find(y); }
int size(int x) { return -data[find(x)]; }
private:
std::vector<int> data;
};
#line 8 "graph/mst.hpp"
template <typename T>
using Edge = std::tuple<int, int, T>;
/*
* Kruskal's Algorithm
*/
template <typename T>
std::pair<T, std::vector<Edge<T>>> kruskal(std::vector<Edge<T>> G, int V) {
std::ranges::sort(G, {}, [](auto& e) { return std::get<2>(e); });
UnionFind uf(V);
T weight = 0;
std::vector<Edge<T>> edges;
for (auto& [u, v, w] : G) {
if (!uf.same(u, v)) {
uf.unite(u, v);
weight += w;
edges.push_back({u, v, w});
}
}
return {weight, edges};
}
/*
* Prim's Algorithm
*/
template <typename T>
std::pair<T, std::vector<Edge<T>>> prim(
const std::vector<std::vector<std::pair<int, T>>>& G) {
std::vector<bool> used(G.size());
auto cmp = [](const auto& e1, const auto& e2) {
return std::get<2>(e1) > std::get<2>(e2);
};
std::priority_queue<Edge<T>, std::vector<Edge<T>>, decltype(cmp)> pq(cmp);
pq.emplace(0, 0, 0);
T weight = 0;
std::vector<Edge<T>> edges;
while (!pq.empty()) {
auto [p, v, w] = pq.top();
pq.pop();
if (used[v]) continue;
used[v] = true;
weight += w;
if (v != 0) edges.push_back({p, v, w});
for (auto& [u, w2] : G[v]) {
pq.emplace(v, u, w2);
}
}
return {weight, edges};
}
/*
* Boruvka's Algorithm
*/
template <typename T>
std::pair<T, std::vector<Edge<T>>> boruvka(std::vector<Edge<T>> G, int V) {
UnionFind uf(V);
T weight = 0;
std::vector<Edge<T>> edges;
while (uf.size(0) < V) {
std::vector<Edge<T>> cheapest(V,
{-1, -1, std::numeric_limits<T>::max()});
for (auto [u, v, w] : G) {
if (!uf.same(u, v)) {
u = uf.find(u);
v = uf.find(v);
if (w < std::get<2>(cheapest[u])) cheapest[u] = {u, v, w};
if (w < std::get<2>(cheapest[v])) cheapest[v] = {u, v, w};
}
}
for (auto [u, v, w] : cheapest) {
if (u != -1 && !uf.same(u, v)) {
uf.unite(u, v);
weight += w;
edges.push_back({u, v, w});
}
}
}
return {weight, edges};
}
#line 8 "graph/manhattan_mst.hpp"
template <typename U>
struct MinMonoid {
using T = std::pair<U, int>;
static T id() { return {std::numeric_limits<U>::max(), -1}; }
static T op(T a, T b) { return std::min(a, b); }
};
template <typename T>
std::pair<T, std::vector<std::pair<int, int>>> manhattan_mst(
std::vector<std::pair<T, T>> pts) {
std::vector<int> idx(pts.size());
std::iota(idx.begin(), idx.end(), 0);
std::vector<std::tuple<int, int, T>> edges;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 2; ++j) {
for (int k = 0; k < 2; ++k) {
// sort by y-x asc then by y desc
std::ranges::sort(idx, {}, [&](int i) {
auto [x, y] = pts[i];
return std::make_tuple(y - x, -y, i);
});
// compress y
std::vector<T> cs;
cs.reserve(pts.size());
for (auto [x, y] : pts) cs.push_back(y);
std::ranges::sort(cs);
cs.erase(std::ranges::unique(cs).begin(), cs.end());
// sweep
SegmentTree<MinMonoid<T>> st(cs.size());
for (int i : idx) {
auto [x, y] = pts[i];
int k = std::ranges::lower_bound(cs, y) - cs.begin();
auto [d, j] = st.fold(k, cs.size());
if (j != -1) {
edges.push_back({i, j, d - (x + y)});
}
st.update(k, {x + y, i});
}
for (auto& p : pts) std::swap(p.first, p.second);
}
for (auto& p : pts) p.first *= -1;
}
for (auto& p : pts) p.second *= -1;
}
auto [weight, mst_edges] = kruskal(edges, pts.size());
std::vector<std::pair<int, int>> ret(mst_edges.size());
std::ranges::transform(mst_edges, ret.begin(), [&](const auto& e) {
return std::make_pair(std::get<0>(e), std::get<1>(e));
});
return {weight, ret};
}