sotanishy's code snippets for competitive programming
#include "graph/scc.hpp"
グラフ $G$ の強連結成分分解をする.
この実装では Kosaraju のアルゴリズムを用いている.
強連結成分を一つの頂点に縮約すると,有向非巡回グラフ (DAG) が得られる.
強連結成分のラベルはトポロジカル順序になっている.
vector<int> scc(vector<vector<int>> G)
vector<vector<int>> contract(vector<vector<int>> G, vector<int> comp)
#pragma once
#include <algorithm>
#include <ranges>
#include <vector>
std::vector<int> scc(const std::vector<std::vector<int>>& G) {
const int n = G.size();
std::vector<std::vector<int>> G_rev(n);
for (int u = 0; u < n; ++u) {
for (int v : G[u]) G_rev[v].push_back(u);
}
std::vector<int> comp(n, -1), order(n);
std::vector<bool> visited(n);
auto dfs = [&](const auto& dfs, int u) -> void {
if (visited[u]) return;
visited[u] = true;
for (int v : G[u]) dfs(dfs, v);
order.push_back(u);
};
for (int v = 0; v < n; ++v) dfs(dfs, v);
int c = 0;
auto rdfs = [&](const auto& rdfs, int u, int c) -> void {
if (comp[u] != -1) return;
comp[u] = c;
for (int v : G_rev[u]) rdfs(rdfs, v, c);
};
for (int v : order | std::views::reverse) {
if (comp[v] == -1) rdfs(rdfs, v, c++);
}
return comp;
}
std::vector<std::vector<int>> contract(const std::vector<std::vector<int>>& G,
const std::vector<int>& comp) {
const int n = *std::ranges::max_element(comp) + 1;
std::vector<std::vector<int>> G2(n);
for (int i = 0; i < (int)G.size(); ++i) {
for (int j : G[i]) {
if (comp[i] != comp[j]) {
G2[comp[i]].push_back(comp[j]);
}
}
}
for (int i = 0; i < n; ++i) {
std::ranges::sort(G2[i]);
G2[i].erase(std::ranges::unique(G2[i]).begin(), G2[i].end());
}
return G2;
}
#line 2 "graph/scc.hpp"
#include <algorithm>
#include <ranges>
#include <vector>
std::vector<int> scc(const std::vector<std::vector<int>>& G) {
const int n = G.size();
std::vector<std::vector<int>> G_rev(n);
for (int u = 0; u < n; ++u) {
for (int v : G[u]) G_rev[v].push_back(u);
}
std::vector<int> comp(n, -1), order(n);
std::vector<bool> visited(n);
auto dfs = [&](const auto& dfs, int u) -> void {
if (visited[u]) return;
visited[u] = true;
for (int v : G[u]) dfs(dfs, v);
order.push_back(u);
};
for (int v = 0; v < n; ++v) dfs(dfs, v);
int c = 0;
auto rdfs = [&](const auto& rdfs, int u, int c) -> void {
if (comp[u] != -1) return;
comp[u] = c;
for (int v : G_rev[u]) rdfs(rdfs, v, c);
};
for (int v : order | std::views::reverse) {
if (comp[v] == -1) rdfs(rdfs, v, c++);
}
return comp;
}
std::vector<std::vector<int>> contract(const std::vector<std::vector<int>>& G,
const std::vector<int>& comp) {
const int n = *std::ranges::max_element(comp) + 1;
std::vector<std::vector<int>> G2(n);
for (int i = 0; i < (int)G.size(); ++i) {
for (int j : G[i]) {
if (comp[i] != comp[j]) {
G2[comp[i]].push_back(comp[j]);
}
}
}
for (int i = 0; i < n; ++i) {
std::ranges::sort(G2[i]);
G2[i].erase(std::ranges::unique(G2[i]).begin(), G2[i].end());
}
return G2;
}