sotanishy's code snippets for competitive programming
#include "graph/two_edge_connected_components.hpp"
二辺連結成分は,どの1本の辺を取り除いても連結であるような部分グラフである.つまり,橋を含まない部分グラフである.
二辺連結成分を縮約して得られるグラフは森になっている.
空間計算量: $O(V + E)$
vector<int> two_edge_connected_components(vector<vector<int>> G, Lowlink low)
縮約には強連結成分分解のファイルにあるcontract
関数がそのまま使える.
#pragma once
#include <algorithm>
#include <vector>
#include "lowlink.hpp"
std::vector<int> two_edge_connected_components(
const std::vector<std::vector<int>>& G, const Lowlink& low) {
int k = 0;
std::vector<int> comp(G.size(), -1);
auto dfs = [&](const auto& dfs, int u) -> void {
comp[u] = k;
for (int v : G[u]) {
if (comp[v] == -1 && !low.is_bridge(u, v)) dfs(dfs, v);
}
};
for (int v = 0; v < (int)G.size(); ++v) {
if (comp[v] == -1) {
dfs(dfs, v);
++k;
}
}
return comp;
}
std::vector<std::vector<int>> contract(const std::vector<std::vector<int>>& G,
const std::vector<int>& comp) {
const int n = *std::ranges::max_element(comp) + 1;
std::vector<std::vector<int>> G2(n);
for (int i = 0; i < (int)G.size(); ++i) {
for (int j : G[i]) {
if (comp[i] != comp[j]) {
G2[comp[i]].push_back(comp[j]);
}
}
}
for (int i = 0; i < n; ++i) {
std::ranges::sort(G2[i]);
G2[i].erase(std::ranges::unique(G2[i]).begin(), G2[i].end());
}
return G2;
}
#line 2 "graph/two_edge_connected_components.hpp"
#include <algorithm>
#include <vector>
#line 3 "graph/lowlink.hpp"
#include <utility>
#line 5 "graph/lowlink.hpp"
class Lowlink {
public:
std::vector<int> ord, low;
std::vector<std::pair<int, int>> bridge;
std::vector<int> articulation;
Lowlink() = default;
explicit Lowlink(const std::vector<std::vector<int>>& G)
: ord(G.size(), -1), low(G.size()), G(G) {
for (int i = 0; i < (int)G.size(); ++i) {
if (ord[i] == -1) dfs(i, -1);
}
}
bool is_bridge(int u, int v) const {
if (ord[u] > ord[v]) std::swap(u, v);
return ord[u] < low[v];
}
private:
std::vector<std::vector<int>> G;
int k = 0;
void dfs(int v, int p) {
low[v] = ord[v] = k++;
bool is_articulation = false, checked = false;
int cnt = 0;
for (int c : G[v]) {
if (c == p && !checked) {
checked = true;
continue;
}
if (ord[c] == -1) {
++cnt;
dfs(c, v);
low[v] = std::min(low[v], low[c]);
if (p != -1 && ord[v] <= low[c]) is_articulation = true;
if (ord[v] < low[c]) bridge.push_back(std::minmax(v, c));
} else {
low[v] = std::min(low[v], ord[c]);
}
}
if (p == -1 && cnt > 1) is_articulation = true;
if (is_articulation) articulation.push_back(v);
}
};
#line 6 "graph/two_edge_connected_components.hpp"
std::vector<int> two_edge_connected_components(
const std::vector<std::vector<int>>& G, const Lowlink& low) {
int k = 0;
std::vector<int> comp(G.size(), -1);
auto dfs = [&](const auto& dfs, int u) -> void {
comp[u] = k;
for (int v : G[u]) {
if (comp[v] == -1 && !low.is_bridge(u, v)) dfs(dfs, v);
}
};
for (int v = 0; v < (int)G.size(); ++v) {
if (comp[v] == -1) {
dfs(dfs, v);
++k;
}
}
return comp;
}
std::vector<std::vector<int>> contract(const std::vector<std::vector<int>>& G,
const std::vector<int>& comp) {
const int n = *std::ranges::max_element(comp) + 1;
std::vector<std::vector<int>> G2(n);
for (int i = 0; i < (int)G.size(); ++i) {
for (int j : G[i]) {
if (comp[i] != comp[j]) {
G2[comp[i]].push_back(comp[j]);
}
}
}
for (int i = 0; i < n; ++i) {
std::ranges::sort(G2[i]);
G2[i].erase(std::ranges::unique(G2[i]).begin(), G2[i].end());
}
return G2;
}