sotanishy's code snippets for competitive programming
#include "math/number-theory/carmichael.hpp"
Carmichael 関数 $\lambda(n)$ の値を求める.これは,$n$ と互いに素である $n$ 以下の自然数 $a$ 全てに対して$a^m \equiv 1 \mod n$ を満たすような最小の自然数 $m$ を与える.
Euler の定理より $m = \phi(n)$ は上の条件を満たすが,それが最小の $m$ であるとは限らない.最小の $m$ が $\lambda(n)$ である.
long long carmichael(long long n)
#pragma once
#include <cmath>
#include <numeric>
#include "prime.hpp"
long long carmichael(long long n) {
long long ret = 1;
for (auto [p, e] : prime_factor(n)) {
long long lambda = std::pow(p, e - 1) * (p - 1);
if (p == 2 && e >= 3) lambda /= 2;
ret = ret / std::gcd(ret, lambda) * lambda;
}
return ret;
}
#line 2 "math/number-theory/carmichael.hpp"
#include <cmath>
#include <numeric>
#line 2 "math/number-theory/prime.hpp"
#include <map>
#line 4 "math/number-theory/prime.hpp"
#include <vector>
/*
* Primality Test
*/
bool is_prime(long long n) {
if (n <= 1) return false;
if (n <= 3) return true;
if (n % 2 == 0 || n % 3 == 0) return false;
if (n < 9) return true;
for (long long i = 5; i * i <= n; i += 6) {
if (n % i == 0 || n % (i + 2) == 0) return false;
}
return true;
}
/*
* Prime Table
*/
std::vector<bool> prime_table(int n) {
std::vector<bool> prime(n + 1, true);
prime[0] = prime[1] = false;
for (int j = 4; j <= n; j += 2) prime[j] = false;
for (int i = 3; i * i <= n; i += 2) {
if (!prime[i]) continue;
for (int j = i * i; j <= n; j += 2 * i) prime[j] = false;
}
return prime;
}
/*
* Table of Minimum Prime Factors
*/
std::vector<int> min_factor_table(int n) {
std::vector<int> factor(n + 1);
std::iota(factor.begin(), factor.end(), 0);
for (int i = 2; i * i <= n; ++i) {
if (factor[i] != i) continue;
for (int j = i * i; j <= n; j += i) {
if (factor[j] == j) factor[j] = i;
}
}
return factor;
}
/*
* Prime Factorization
*/
std::map<long long, int> prime_factor(long long n) {
std::map<long long, int> ret;
if (n % 2 == 0) {
int cnt = 0;
while (n % 2 == 0) {
++cnt;
n /= 2;
}
ret[2] = cnt;
}
for (long long i = 3; i * i <= n; i += 2) {
if (n % i == 0) {
int cnt = 0;
while (n % i == 0) {
++cnt;
n /= i;
}
ret[i] = cnt;
}
}
if (n != 1) ret[n] = 1;
return ret;
}
#line 6 "math/number-theory/carmichael.hpp"
long long carmichael(long long n) {
long long ret = 1;
for (auto [p, e] : prime_factor(n)) {
long long lambda = std::pow(p, e - 1) * (p - 1);
if (p == 2 && e >= 3) lambda /= 2;
ret = ret / std::gcd(ret, lambda) * lambda;
}
return ret;
}