sotanishy's code snippets for competitive programming
#include "math/set/subset_convolution.hpp"
数列 $f$ と $g$ の subset convolution $f * g$ は以下で定義される.
\[(f * g)(S) = \sum_{T \subset S} f(T) g(S\setminus T)\]$f, g$ の長さを $2^n$ とするとき,素朴に部分集合を列挙する方法では計算量は $O(3^n)$ となるが,$O(n^2 2^n)$ で計算することができる.
vector<T> subset_convolution(vector<T> a, vector<T> b)
#pragma once
#include <array>
#include <vector>
#include "zeta_moebius_transform.hpp"
template <typename T, std::size_t N>
std::array<T, N>& operator+=(std::array<T, N>& lhs,
const std::array<T, N>& rhs) {
for (int i = 0; i < (int)N; ++i) lhs[i] += rhs[i];
return lhs;
}
template <typename T, std::size_t N>
std::array<T, N>& operator-=(std::array<T, N>& lhs,
const std::array<T, N>& rhs) {
for (int i = 0; i < (int)N; ++i) lhs[i] -= rhs[i];
return lhs;
}
template <typename T, int N>
std::vector<T> subset_convolution(const std::vector<T>& a,
const std::vector<T>& b) {
using Poly = std::array<T, N + 1>;
const int n = std::bit_ceil(std::max(a.size(), b.size()));
// convert to polynomials
std::vector<Poly> pa(n), pb(n);
for (int i = 0; i < (int)a.size(); ++i) {
pa[i][std::popcount((unsigned int)i)] = a[i];
}
for (int i = 0; i < (int)b.size(); ++i) {
pb[i][std::popcount((unsigned int)i)] = b[i];
}
// bitwise or convolution
subset_fzt(pa);
subset_fzt(pb);
for (int i = 0; i < n; ++i) {
Poly pc;
for (int j = 0; j <= N; ++j) {
for (int k = 0; k <= N - j; ++k) {
pc[j + k] += pa[i][j] * pb[i][k];
}
}
pa[i].swap(pc);
}
subset_fmt(pa);
// convert back
std::vector<T> ret(n);
for (int i = 0; i < n; ++i) {
ret[i] = pa[i][std::popcount((unsigned int)i)];
}
return ret;
}
#line 2 "math/set/subset_convolution.hpp"
#include <array>
#include <vector>
#line 2 "math/set/zeta_moebius_transform.hpp"
#include <bit>
#include <cassert>
#line 5 "math/set/zeta_moebius_transform.hpp"
template <typename T>
void superset_fzt(std::vector<T>& a) {
assert(std::has_single_bit(a.size()));
const int n = a.size();
for (int i = 1; i < n; i <<= 1) {
for (int j = 0; j < n; ++j) {
if (!(j & i)) a[j] += a[j | i];
}
}
}
template <typename T>
void superset_fmt(std::vector<T>& a) {
assert(std::has_single_bit(a.size()));
const int n = a.size();
for (int i = 1; i < n; i <<= 1) {
for (int j = 0; j < n; ++j) {
if (!(j & i)) a[j] -= a[j | i];
}
}
}
template <typename T>
void subset_fzt(std::vector<T>& a) {
assert(std::has_single_bit(a.size()));
const int n = a.size();
for (int i = 1; i < n; i <<= 1) {
for (int j = 0; j < n; ++j) {
if (!(j & i)) a[j | i] += a[j];
}
}
}
template <typename T>
void subset_fmt(std::vector<T>& a) {
assert(std::has_single_bit(a.size()));
const int n = a.size();
for (int i = 1; i < n; i <<= 1) {
for (int j = 0; j < n; ++j) {
if (!(j & i)) a[j | i] -= a[j];
}
}
}
#line 6 "math/set/subset_convolution.hpp"
template <typename T, std::size_t N>
std::array<T, N>& operator+=(std::array<T, N>& lhs,
const std::array<T, N>& rhs) {
for (int i = 0; i < (int)N; ++i) lhs[i] += rhs[i];
return lhs;
}
template <typename T, std::size_t N>
std::array<T, N>& operator-=(std::array<T, N>& lhs,
const std::array<T, N>& rhs) {
for (int i = 0; i < (int)N; ++i) lhs[i] -= rhs[i];
return lhs;
}
template <typename T, int N>
std::vector<T> subset_convolution(const std::vector<T>& a,
const std::vector<T>& b) {
using Poly = std::array<T, N + 1>;
const int n = std::bit_ceil(std::max(a.size(), b.size()));
// convert to polynomials
std::vector<Poly> pa(n), pb(n);
for (int i = 0; i < (int)a.size(); ++i) {
pa[i][std::popcount((unsigned int)i)] = a[i];
}
for (int i = 0; i < (int)b.size(); ++i) {
pb[i][std::popcount((unsigned int)i)] = b[i];
}
// bitwise or convolution
subset_fzt(pa);
subset_fzt(pb);
for (int i = 0; i < n; ++i) {
Poly pc;
for (int j = 0; j <= N; ++j) {
for (int k = 0; k <= N - j; ++k) {
pc[j + k] += pa[i][j] * pb[i][k];
}
}
pa[i].swap(pc);
}
subset_fmt(pa);
// convert back
std::vector<T> ret(n);
for (int i = 0; i < n; ++i) {
ret[i] = pa[i][std::popcount((unsigned int)i)];
}
return ret;
}