sotanishy's code snippets for competitive programming
#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_A"
#include "../../geometry/geometry.hpp"
#include "../../geometry/polygon.hpp"
#include <bits/stdc++.h>
using namespace std;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(1);
int n;
cin >> n;
vector<Vec> pts(n);
for (auto& x : pts) cin >> x;
cout << area(pts) << endl;
}
#line 1 "test/aoj/CGL_3_A.test.cpp"
#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_A"
#line 2 "geometry/geometry.hpp"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <complex>
#include <iostream>
#include <numbers>
#include <numeric>
#include <vector>
// note that if T is of an integer type, std::abs does not work
using T = double;
using Vec = std::complex<T>;
std::istream& operator>>(std::istream& is, Vec& p) {
T x, y;
is >> x >> y;
p = {x, y};
return is;
}
T dot(const Vec& a, const Vec& b) { return (std::conj(a) * b).real(); }
T cross(const Vec& a, const Vec& b) { return (std::conj(a) * b).imag(); }
constexpr T PI = std::numbers::pi_v<T>;
constexpr T eps = 1e-10;
inline bool eq(T a, T b) { return std::abs(a - b) <= eps; }
inline bool eq(Vec a, Vec b) { return std::abs(a - b) <= eps; }
inline bool lt(T a, T b) { return a < b - eps; }
inline bool leq(T a, T b) { return a <= b + eps; }
struct Line {
Vec p1, p2;
Line() = default;
Line(const Vec& p1, const Vec& p2) : p1(p1), p2(p2) {}
Vec dir() const { return p2 - p1; }
};
struct Segment : Line {
using Line::Line;
};
struct Circle {
Vec c;
T r;
Circle() = default;
Circle(const Vec& c, T r) : c(c), r(r) {}
};
using Polygon = std::vector<Vec>;
Vec rot(const Vec& a, T ang) { return a * Vec(std::cos(ang), std::sin(ang)); }
Vec perp(const Vec& a) { return Vec(-a.imag(), a.real()); }
Vec projection(const Line& l, const Vec& p) {
return l.p1 + dot(p - l.p1, l.dir()) * l.dir() / std::norm(l.dir());
}
Vec reflection(const Line& l, const Vec& p) {
return T(2) * projection(l, p) - p;
}
// 0: collinear
// 1: counter-clockwise
// -1: clockwise
int ccw(const Vec& a, const Vec& b, const Vec& c) {
if (eq(cross(b - a, c - a), 0)) return 0;
if (lt(cross(b - a, c - a), 0)) return -1;
return 1;
}
void sort_by_arg(std::vector<Vec>& pts) {
std::ranges::sort(pts, [&](auto& p, auto& q) {
if ((p.imag() < 0) != (q.imag() < 0)) return (p.imag() < 0);
if (cross(p, q) == 0) {
if (p == Vec(0, 0))
return !(q.imag() < 0 || (q.imag() == 0 && q.real() > 0));
if (q == Vec(0, 0))
return (p.imag() < 0 || (p.imag() == 0 && p.real() > 0));
return (p.real() > q.real());
}
return (cross(p, q) > 0);
});
}
#line 2 "geometry/polygon.hpp"
#include <deque>
#line 3 "geometry/intersect.hpp"
bool intersect(const Segment& s, const Vec& p) {
Vec u = s.p1 - p, v = s.p2 - p;
return eq(cross(u, v), 0) && leq(dot(u, v), 0);
}
// 0: outside
// 1: on the border
// 2: inside
int intersect(const Polygon& poly, const Vec& p) {
const int n = poly.size();
bool in = 0;
for (int i = 0; i < n; ++i) {
auto a = poly[i] - p, b = poly[(i + 1) % n] - p;
if (eq(cross(a, b), 0) && (lt(dot(a, b), 0) || eq(dot(a, b), 0)))
return 1;
if (a.imag() > b.imag()) std::swap(a, b);
if (leq(a.imag(), 0) && lt(0, b.imag()) && lt(cross(a, b), 0)) in ^= 1;
}
return in ? 2 : 0;
}
int intersect(const Segment& s, const Segment& t) {
auto a = s.p1, b = s.p2;
auto c = t.p1, d = t.p2;
if (ccw(a, b, c) != ccw(a, b, d) && ccw(c, d, a) != ccw(c, d, b)) return 2;
if (intersect(s, c) || intersect(s, d) || intersect(t, a) ||
intersect(t, b))
return 1;
return 0;
}
// true if they have positive area in common or touch on the border
bool intersect(const Polygon& poly1, const Polygon& poly2) {
const int n = poly1.size();
const int m = poly2.size();
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
if (intersect(Segment(poly1[i], poly1[(i + 1) % n]),
Segment(poly2[j], poly2[(j + 1) % m]))) {
return true;
}
}
}
return intersect(poly1, poly2[0]) || intersect(poly2, poly1[0]);
}
// 0: inside
// 1: inscribe
// 2: intersect
// 3: circumscribe
// 4: outside
int intersect(const Circle& c1, const Circle& c2) {
T d = std::abs(c1.c - c2.c);
if (lt(d, std::abs(c2.r - c1.r))) return 0;
if (eq(d, std::abs(c2.r - c1.r))) return 1;
if (eq(c1.r + c2.r, d)) return 3;
if (lt(c1.r + c2.r, d)) return 4;
return 2;
}
#line 4 "geometry/dist.hpp"
T dist(const Line& l, const Vec& p) {
return std::abs(cross(p - l.p1, l.dir())) / std::abs(l.dir());
}
T dist(const Segment& s, const Vec& p) {
if (lt(dot(p - s.p1, s.dir()), 0)) return std::abs(p - s.p1);
if (lt(dot(p - s.p2, -s.dir()), 0)) return std::abs(p - s.p2);
return std::abs(cross(p - s.p1, s.dir())) / std::abs(s.dir());
}
T dist(const Segment& s, const Segment& t) {
if (intersect(s, t)) return T(0);
return std::min(
{dist(s, t.p1), dist(s, t.p2), dist(t, s.p1), dist(t, s.p2)});
}
#line 4 "geometry/intersection.hpp"
Vec intersection(const Line& l, const Line& m) {
assert(!eq(cross(l.dir(), m.dir()), 0)); // not parallel
Vec r = m.p1 - l.p1;
return l.p1 + cross(m.dir(), r) / cross(m.dir(), l.dir()) * l.dir();
}
std::vector<Vec> intersection(const Circle& c, const Line& l) {
T d = dist(l, c.c);
if (lt(c.r, d)) return {}; // no intersection
Vec e1 = l.dir() / std::abs(l.dir());
Vec e2 = perp(e1);
if (ccw(c.c, l.p1, l.p2) == 1) e2 *= -1;
if (eq(c.r, d)) return {c.c + d * e2}; // tangent
T t = std::sqrt(c.r * c.r - d * d);
return {c.c + d * e2 + t * e1, c.c + d * e2 - t * e1};
}
std::vector<Vec> intersection(const Circle& c1, const Circle& c2) {
T d = std::abs(c1.c - c2.c);
if (lt(c1.r + c2.r, d)) return {}; // outside
Vec e1 = (c2.c - c1.c) / std::abs(c2.c - c1.c);
Vec e2 = perp(e1);
if (lt(d, std::abs(c2.r - c1.r))) return {}; // contain
if (eq(d, std::abs(c2.r - c1.r))) return {c1.c + c1.r * e1}; // tangent
T x = (c1.r * c1.r - c2.r * c2.r + d * d) / (2 * d);
T y = std::sqrt(c1.r * c1.r - x * x);
return {c1.c + x * e1 + y * e2, c1.c + x * e1 - y * e2};
}
T area_intersection(const Circle& c1, const Circle& c2) {
T d = std::abs(c2.c - c1.c);
if (leq(c1.r + c2.r, d)) return 0; // outside
if (leq(d, std::abs(c2.r - c1.r))) { // inside
T r = std::min(c1.r, c2.r);
return PI * r * r;
}
T ans = 0;
T a;
a = std::acos((c1.r * c1.r + d * d - c2.r * c2.r) / (2 * c1.r * d));
ans += c1.r * c1.r * (a - std::sin(a) * std::cos(a));
a = std::acos((c2.r * c2.r + d * d - c1.r * c1.r) / (2 * c2.r * d));
ans += c2.r * c2.r * (a - std::sin(a) * std::cos(a));
return ans;
}
#line 6 "geometry/polygon.hpp"
T area(const Polygon& poly) {
const int n = poly.size();
T res = 0;
for (int i = 0; i < n; ++i) {
res += cross(poly[i], poly[(i + 1) % n]);
}
return std::abs(res) / T(2);
}
bool is_convex(const Polygon& poly) {
int n = poly.size();
for (int i = 0; i < n; ++i) {
if (lt(cross(poly[(i + 1) % n] - poly[i],
poly[(i + 2) % n] - poly[(i + 1) % n]),
0)) {
return false;
}
}
return true;
}
Polygon convex_cut(const Polygon& poly, const Line& l) {
const int n = poly.size();
Polygon res;
for (int i = 0; i < n; ++i) {
auto p = poly[i], q = poly[(i + 1) % n];
if (ccw(l.p1, l.p2, p) != -1) {
if (res.empty() || !eq(res.back(), p)) {
res.push_back(p);
}
}
if (ccw(l.p1, l.p2, p) * ccw(l.p1, l.p2, q) < 0) {
auto c = intersection(Line(p, q), l);
if (res.empty() || !eq(res.back(), c)) {
res.push_back(c);
}
}
}
return res;
}
Polygon halfplane_intersection(std::vector<std::pair<Vec, Vec>> hps) {
using Hp = std::pair<Vec, Vec>; // (normal vector, a point on the border)
auto intersection = [&](const Hp& l1, const Hp& l2) -> Vec {
auto d = l2.second - l1.second;
return l1.second +
(dot(d, l2.first) / cross(l1.first, l2.first)) * perp(l1.first);
};
// check if the halfplane h contains the point p
auto contains = [&](const Hp& h, const Vec& p) -> bool {
return dot(p - h.second, h.first) > 0;
};
constexpr T INF = 1e15;
hps.emplace_back(Vec(1, 0), Vec(-INF, 0)); // -INF <= x
hps.emplace_back(Vec(-1, 0), Vec(INF, 0)); // x <= INF
hps.emplace_back(Vec(0, 1), Vec(0, -INF)); // -INF <= y
hps.emplace_back(Vec(0, -1), Vec(0, INF)); // y <= INF
std::ranges::sort(hps, {}, [&](auto& h) { return std::arg(h.first); });
std::deque<Hp> dq;
int len = 0;
for (auto& hp : hps) {
while (len > 1 &&
!contains(hp, intersection(dq[len - 1], dq[len - 2]))) {
dq.pop_back();
--len;
}
while (len > 1 && !contains(hp, intersection(dq[0], dq[1]))) {
dq.pop_front();
--len;
}
// parallel
if (len > 0 && eq(cross(dq[len - 1].first, hp.first), 0)) {
// opposite
if (lt(dot(dq[len - 1].first, hp.first), 0)) {
return {};
}
// same
if (!contains(hp, dq[len - 1].second)) {
dq.pop_back();
--len;
} else
continue;
}
dq.push_back(hp);
++len;
}
while (len > 2 &&
!contains(dq[0], intersection(dq[len - 1], dq[len - 2]))) {
dq.pop_back();
--len;
}
while (len > 2 && !contains(dq[len - 1], intersection(dq[0], dq[1]))) {
dq.pop_front();
--len;
}
if (len < 3) return {};
std::vector<Vec> poly(len);
for (int i = 0; i < len - 1; ++i) {
poly[i] = intersection(dq[i], dq[i + 1]);
}
poly[len - 1] = intersection(dq[len - 1], dq[0]);
return poly;
}
class PolygonContainment {
public:
explicit PolygonContainment(Polygon poly) : poly(poly) {}
// 0: outside
// 1: on the border
// 2: inside
int query(Vec pt) {
auto c1 = cross(poly[1] - poly[0], pt - poly[0]);
auto c2 = cross(poly.back() - poly[0], pt - poly[0]);
if (lt(c1, 0) || lt(0, c2)) return 0;
int lb = 1, ub = (int)poly.size() - 1;
while (ub - lb > 1) {
int m = std::midpoint(lb, ub);
if (leq(0, cross(poly[m] - poly[0], pt - poly[0])))
lb = m;
else
ub = m;
}
auto c = cross(poly[lb] - pt, poly[ub] - pt);
if (lt(c, 0)) return 0;
if (eq(c, 0) || eq(c1, 0) || eq(c2, 0)) return 1;
return 2;
}
private:
Polygon poly;
};
#line 5 "test/aoj/CGL_3_A.test.cpp"
#include <bits/stdc++.h>
using namespace std;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(1);
int n;
cin >> n;
vector<Vec> pts(n);
for (auto& x : pts) cin >> x;
cout << area(pts) << endl;
}