sotanishy's code snippets for competitive programming
#define PROBLEM "https://judge.yosupo.jp/problem/bitwise_xor_convolution"
#include <bits/stdc++.h>
#include "../../math/modint.hpp"
#include "../../convolution/xor_convolution.hpp"
using namespace std;
using ll = long long;
using mint = Modint<998244353>;
int main() {
int N;
cin >> N;
vector<mint> a(1 << N), b(1 << N);
for (auto& x : a) cin >> x;
for (auto& x : b) cin >> x;
auto c = xor_convolution(a, b);
for (int i = 0; i < (1 << N); ++i)
cout << c[i] << (i < (1 << N) - 1 ? " " : "\n");
}
#line 1 "test/yosupo/bitwise_xor_convolution.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/bitwise_xor_convolution"
#include <bits/stdc++.h>
#line 4 "math/modint.hpp"
/**
* @brief Mod int
*/
template <int m>
class Modint {
using mint = Modint;
static_assert(m > 0, "Modulus must be positive");
public:
static constexpr int mod() { return m; }
constexpr Modint(long long y = 0) : x(y >= 0 ? y % m : (y % m + m) % m) {}
constexpr int val() const { return x; }
constexpr mint& operator+=(const mint& r) {
if ((x += r.x) >= m) x -= m;
return *this;
}
constexpr mint& operator-=(const mint& r) {
if ((x += m - r.x) >= m) x -= m;
return *this;
}
constexpr mint& operator*=(const mint& r) {
x = static_cast<int>(1LL * x * r.x % m);
return *this;
}
constexpr mint& operator/=(const mint& r) { return *this *= r.inv(); }
constexpr bool operator==(const mint& r) const { return x == r.x; }
constexpr mint operator+() const { return *this; }
constexpr mint operator-() const { return mint(-x); }
constexpr friend mint operator+(const mint& l, const mint& r) {
return mint(l) += r;
}
constexpr friend mint operator-(const mint& l, const mint& r) {
return mint(l) -= r;
}
constexpr friend mint operator*(const mint& l, const mint& r) {
return mint(l) *= r;
}
constexpr friend mint operator/(const mint& l, const mint& r) {
return mint(l) /= r;
}
constexpr mint inv() const {
int a = x, b = m, u = 1, v = 0;
while (b > 0) {
int t = a / b;
std::swap(a -= t * b, b);
std::swap(u -= t * v, v);
}
return mint(u);
}
constexpr mint pow(long long n) const {
mint ret(1), mul(x);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend std::ostream& operator<<(std::ostream& os, const mint& r) {
return os << r.x;
}
friend std::istream& operator>>(std::istream& is, mint& r) {
long long t;
is >> t;
r = mint(t);
return is;
}
private:
int x;
};
#line 2 "convolution/xor_convolution.hpp"
#include <bit>
#line 4 "convolution/xor_convolution.hpp"
#line 5 "convolution/walsh_hadamard_transform.hpp"
template <typename T>
void fwht(std::vector<T>& a) {
assert(std::has_single_bit(a.size()));
const int n = a.size();
for (int h = 1; h < n; h <<= 1) {
for (int i = 0; i < n; i += h << 1) {
for (int j = i; j < i + h; ++j) {
T x = a[j], y = a[j | h];
a[j] = x + y;
a[j | h] = x - y;
}
}
}
}
template <typename T>
void ifwht(std::vector<T>& a) {
assert(std::has_single_bit(a.size()));
const int n = a.size();
const T inv2 = T(1) / 2;
for (int h = 1; h < n; h <<= 1) {
for (int i = 0; i < n; i += h << 1) {
for (int j = i; j < i + h; ++j) {
T x = a[j], y = a[j | h];
a[j] = (x + y) * inv2;
a[j | h] = (x - y) * inv2;
}
}
}
}
#line 6 "convolution/xor_convolution.hpp"
/**
* @brief Bitwise XOR Convolution
*/
template <typename T>
std::vector<T> xor_convolution(std::vector<T> a, std::vector<T> b) {
const int n = std::bit_ceil(std::max(a.size(), b.size()));
a.resize(n);
b.resize(n);
fwht(a);
fwht(b);
for (int i = 0; i < n; ++i) a[i] *= b[i];
ifwht(a);
return a;
}
#line 7 "test/yosupo/bitwise_xor_convolution.test.cpp"
using namespace std;
using ll = long long;
using mint = Modint<998244353>;
int main() {
int N;
cin >> N;
vector<mint> a(1 << N), b(1 << N);
for (auto& x : a) cin >> x;
for (auto& x : b) cin >> x;
auto c = xor_convolution(a, b);
for (int i = 0; i < (1 << N); ++i)
cout << c[i] << (i < (1 << N) - 1 ? " " : "\n");
}