sotanishy's code snippets for competitive programming
#define PROBLEM "https://judge.yosupo.jp/problem/find_linear_recurrence"
#include "../../math/modint.hpp"
#include "../../math/berlekamp_massey.cpp"
#include <bits/stdc++.h>
using namespace std;
using mint = Modint<998244353>;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
int N;
cin >> N;
vector<mint> a(N);
for (auto& x : a) cin >> x;
auto ans = berlekamp_massey(a);
cout << ans.size() << endl;
for (int i = 0; i < ans.size(); ++i) {
cout << ans[i];
if (i < (int) ans.size() - 1) cout << " ";
}
cout << endl;
}
#line 1 "test/yosupo/find_linear_recurrence.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/find_linear_recurrence"
#line 2 "math/modint.hpp"
#include <algorithm>
#include <iostream>
/**
* @brief Mod int
*/
template <int m>
class Modint {
using mint = Modint;
static_assert(m > 0, "Modulus must be positive");
public:
static constexpr int mod() { return m; }
constexpr Modint(long long y = 0) : x(y >= 0 ? y % m : (y % m + m) % m) {}
constexpr int val() const { return x; }
constexpr mint& operator+=(const mint& r) {
if ((x += r.x) >= m) x -= m;
return *this;
}
constexpr mint& operator-=(const mint& r) {
if ((x += m - r.x) >= m) x -= m;
return *this;
}
constexpr mint& operator*=(const mint& r) {
x = static_cast<int>(1LL * x * r.x % m);
return *this;
}
constexpr mint& operator/=(const mint& r) { return *this *= r.inv(); }
constexpr bool operator==(const mint& r) const { return x == r.x; }
constexpr mint operator+() const { return *this; }
constexpr mint operator-() const { return mint(-x); }
constexpr friend mint operator+(const mint& l, const mint& r) {
return mint(l) += r;
}
constexpr friend mint operator-(const mint& l, const mint& r) {
return mint(l) -= r;
}
constexpr friend mint operator*(const mint& l, const mint& r) {
return mint(l) *= r;
}
constexpr friend mint operator/(const mint& l, const mint& r) {
return mint(l) /= r;
}
constexpr mint inv() const {
int a = x, b = m, u = 1, v = 0;
while (b > 0) {
int t = a / b;
std::swap(a -= t * b, b);
std::swap(u -= t * v, v);
}
return mint(u);
}
constexpr mint pow(long long n) const {
mint ret(1), mul(x);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend std::ostream& operator<<(std::ostream& os, const mint& r) {
return os << r.x;
}
friend std::istream& operator>>(std::istream& is, mint& r) {
long long t;
is >> t;
r = mint(t);
return is;
}
private:
int x;
};
#line 2 "math/berlekamp_massey.cpp"
#include <vector>
template <typename T>
std::vector<T> berlekamp_massey(const std::vector<T>& a) {
int n = a.size();
std::vector<T> B = {1}, C = {1};
T b = 1;
int L = 0, m = 1;
for (int i = 0; i < n; ++i) {
T d = a[i];
for (int j = 1; j < (int) C.size(); ++j) {
d += a[i-j] * C[j];
}
if (d == 0) {
++m;
} else {
auto tmp = C;
if (C.size() < m + B.size()) {
C.resize(m + B.size());
}
T f = d / b;
for (int j = 0; j < (int) B.size(); ++j) {
C[m + j] -= f * B[j];
}
if (2 * L <= i) {
L = i + 1 - L;
b = d;
B = tmp;
m = 1;
} else {
++m;
}
}
}
std::vector<T> ret(L);
for (int i = 1; i <= L; ++i) {
ret[i-1] = -C[i];
}
return ret;
}
#line 5 "test/yosupo/find_linear_recurrence.test.cpp"
#include <bits/stdc++.h>
using namespace std;
using mint = Modint<998244353>;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
int N;
cin >> N;
vector<mint> a(N);
for (auto& x : a) cin >> x;
auto ans = berlekamp_massey(a);
cout << ans.size() << endl;
for (int i = 0; i < ans.size(); ++i) {
cout << ans[i];
if (i < (int) ans.size() - 1) cout << " ";
}
cout << endl;
}