sotanishy's code snippets for competitive programming
#define PROBLEM "https://judge.yosupo.jp/problem/furthest_pair"
#include "../../geometry/furthest_pair.hpp"
#include <bits/stdc++.h>
#include "../../geometry/geometry.hpp"
using namespace std;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
cout << fixed << setprecision(15);
int T;
cin >> T;
while (T--) {
int N;
cin >> N;
vector<Vec> pts(N);
for (auto& p : pts) cin >> p;
auto [d, i, j] = furthest_pair(pts);
cout << i << " " << j << "\n";
}
}
#line 1 "test/yosupo/furthest_pair.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/furthest_pair"
#line 2 "geometry/furthest_pair.hpp"
#include <algorithm>
#include <utility>
#include <vector>
#line 3 "geometry/convex_hull.hpp"
#line 3 "geometry/geometry.hpp"
#include <cassert>
#include <cmath>
#include <complex>
#include <iostream>
#include <numbers>
#include <numeric>
#line 10 "geometry/geometry.hpp"
// note that if T is of an integer type, std::abs does not work
using T = double;
using Vec = std::complex<T>;
std::istream& operator>>(std::istream& is, Vec& p) {
T x, y;
is >> x >> y;
p = {x, y};
return is;
}
T dot(const Vec& a, const Vec& b) { return (std::conj(a) * b).real(); }
T cross(const Vec& a, const Vec& b) { return (std::conj(a) * b).imag(); }
constexpr T PI = std::numbers::pi_v<T>;
constexpr T eps = 1e-10;
inline bool eq(T a, T b) { return std::abs(a - b) <= eps; }
inline bool eq(Vec a, Vec b) { return std::abs(a - b) <= eps; }
inline bool lt(T a, T b) { return a < b - eps; }
inline bool leq(T a, T b) { return a <= b + eps; }
struct Line {
Vec p1, p2;
Line() = default;
Line(const Vec& p1, const Vec& p2) : p1(p1), p2(p2) {}
Vec dir() const { return p2 - p1; }
};
struct Segment : Line {
using Line::Line;
};
struct Circle {
Vec c;
T r;
Circle() = default;
Circle(const Vec& c, T r) : c(c), r(r) {}
};
using Polygon = std::vector<Vec>;
Vec rot(const Vec& a, T ang) { return a * Vec(std::cos(ang), std::sin(ang)); }
Vec perp(const Vec& a) { return Vec(-a.imag(), a.real()); }
Vec projection(const Line& l, const Vec& p) {
return l.p1 + dot(p - l.p1, l.dir()) * l.dir() / std::norm(l.dir());
}
Vec reflection(const Line& l, const Vec& p) {
return T(2) * projection(l, p) - p;
}
// 0: collinear
// 1: counter-clockwise
// -1: clockwise
int ccw(const Vec& a, const Vec& b, const Vec& c) {
if (eq(cross(b - a, c - a), 0)) return 0;
if (lt(cross(b - a, c - a), 0)) return -1;
return 1;
}
void sort_by_arg(std::vector<Vec>& pts) {
std::ranges::sort(pts, [&](auto& p, auto& q) {
if ((p.imag() < 0) != (q.imag() < 0)) return (p.imag() < 0);
if (cross(p, q) == 0) {
if (p == Vec(0, 0))
return !(q.imag() < 0 || (q.imag() == 0 && q.real() > 0));
if (q == Vec(0, 0))
return (p.imag() < 0 || (p.imag() == 0 && p.real() > 0));
return (p.real() > q.real());
}
return (cross(p, q) > 0);
});
}
#line 5 "geometry/convex_hull.hpp"
std::vector<Vec> convex_hull(std::vector<Vec> pts, bool strict = true) {
std::ranges::sort(pts, {}, [](const Vec& v) {
return std::make_pair(v.imag(), v.real());
});
if (strict) {
pts.erase(std::ranges::unique(pts).begin(), pts.end());
}
const int n = pts.size();
if (n <= 1) return pts;
int k = 0; // the number of vertices in the convex hull
std::vector<Vec> ch(2 * n);
// right
for (int i = 0; i < n; ++i) {
if (strict) {
while (k > 1 &&
leq(cross(ch[k - 1] - ch[k - 2], pts[i] - ch[k - 1]), 0))
--k;
} else {
while (k > 1 &&
lt(cross(ch[k - 1] - ch[k - 2], pts[i] - ch[k - 1]), 0))
--k;
}
ch[k++] = pts[i];
}
int t = k;
// left
for (int i = n - 2; i >= 0; --i) {
if (strict) {
while (k > t &&
leq(cross(ch[k - 1] - ch[k - 2], pts[i] - ch[k - 1]), 0))
--k;
} else {
while (k > t &&
lt(cross(ch[k - 1] - ch[k - 2], pts[i] - ch[k - 1]), 0))
--k;
}
ch[k++] = pts[i];
}
ch.resize(k - 1);
return ch;
}
#line 8 "geometry/furthest_pair.hpp"
/**
* @brief Furthest Pair
*/
std::tuple<T, int, int> furthest_pair(const std::vector<Vec>& pts) {
assert(pts.size() >= 2);
auto conv = convex_hull(pts);
const int n = conv.size();
if (n <= 1) {
return {0, 0, 1};
}
std::tuple<T, int, int> furthest;
if (n == 2) {
furthest = {std::abs(conv[0] - conv[1]), 0, 1};
} else {
int si = 0, sj = 0;
for (int k = 0; k < n; ++k) {
if (lt(conv[k].real(), conv[si].real())) si = k;
if (lt(conv[sj].real(), conv[k].real())) sj = k;
}
for (int i = si, j = sj; i != sj || j != si;) {
furthest = std::max(furthest, {std::abs(conv[i] - conv[j]), i, j});
if (lt(cross(conv[(i + 1) % n] - conv[i],
conv[(j + 1) % n] - conv[j]),
0)) {
i = (i + 1) % n;
} else {
j = (j + 1) % n;
}
}
}
auto [d, i0, j0] = furthest;
int i1 = -1, j1 = -1;
for (int k = 0; k < (int)pts.size(); ++k) {
if (i1 == -1 && pts[k] == conv[i0]) i1 = k;
if (j1 == -1 && pts[k] == conv[j0]) j1 = k;
}
return {d, i1, j1};
}
#line 4 "test/yosupo/furthest_pair.test.cpp"
#include <bits/stdc++.h>
#line 8 "test/yosupo/furthest_pair.test.cpp"
using namespace std;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
cout << fixed << setprecision(15);
int T;
cin >> T;
while (T--) {
int N;
cin >> N;
vector<Vec> pts(N);
for (auto& p : pts) cin >> p;
auto [d, i, j] = furthest_pair(pts);
cout << i << " " << j << "\n";
}
}