sotanishy's code snippets for competitive programming
#define PROBLEM "https://judge.yosupo.jp/problem/shortest_path"
#include "../../graph/shortest_path.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
int N, M, s, t;
cin >> N >> M >> s >> t;
vector<vector<pair<int, long long>>> G(N);
for (int i = 0; i < M; ++i) {
int a, b, c;
cin >> a >> b >> c;
G[a].push_back({b, c});
}
auto [dist, par] = shortest_path_tree(G, s);
if (dist[t] >= 1e18) {
cout << -1 << endl;
} else {
vector<int> path;
for (int v = t; v != s; v = par[v]) {
path.push_back(v);
}
path.push_back(s);
reverse(path.begin(), path.end());
cout << dist[t] << " " << path.size() - 1 << endl;
for (int i = 0; i < (int)path.size() - 1; ++i) {
cout << path[i] << " " << path[i + 1] << "\n";
}
}
}
#line 1 "test/yosupo/shortest_path.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/shortest_path"
#line 2 "graph/shortest_path.hpp"
#include <limits>
#include <queue>
#include <tuple>
#include <utility>
#include <vector>
/*
* Bellman-Ford Algorithm
*/
template <typename T>
std::vector<T> bellman_ford(const std::vector<std::tuple<int, int, T>>& G,
int V, int s) {
constexpr T INF = std::numeric_limits<T>::max();
std::vector<T> dist(V, INF);
dist[s] = 0;
for (int i = 0; i < V; ++i) {
for (auto& [s, t, w] : G) {
if (dist[s] != INF && dist[t] > dist[s] + w) {
dist[t] = dist[s] + w;
if (i == V - 1) return {};
}
}
}
return dist;
}
/*
* Floyd-Warshall Algorithm
*/
template <typename T>
void floyd_warshall(std::vector<std::vector<T>>& dist) {
const int V = dist.size();
for (int k = 0; k < V; ++k) {
for (int i = 0; i < V; ++i) {
for (int j = 0; j < V; ++j) {
dist[i][j] = std::min(dist[i][j], dist[i][k] + dist[k][j]);
}
}
}
}
/*
* Dijkstra's Algorithm
*/
template <typename T>
std::vector<T> dijkstra(const std::vector<std::vector<std::pair<int, T>>>& G,
int s) {
std::vector<T> dist(G.size(), std::numeric_limits<T>::max());
dist[s] = 0;
using P = std::pair<T, int>;
std::priority_queue<P, std::vector<P>, std::greater<P>> pq;
pq.emplace(0, s);
while (!pq.empty()) {
auto [d, v] = pq.top();
pq.pop();
if (dist[v] < d) continue;
for (auto& [u, w] : G[v]) {
if (dist[u] > d + w) {
dist[u] = d + w;
pq.emplace(dist[u], u);
}
}
}
return dist;
}
template <typename T>
std::pair<std::vector<T>, std::vector<int>> shortest_path_tree(
const std::vector<std::vector<std::pair<int, T>>>& G, int s) {
std::vector<T> dist(G.size(), std::numeric_limits<T>::max());
std::vector<int> par(G.size(), -1);
dist[s] = 0;
using P = std::pair<T, int>;
std::priority_queue<P, std::vector<P>, std::greater<P>> pq;
pq.emplace(0, s);
while (!pq.empty()) {
auto [d, v] = pq.top();
pq.pop();
if (dist[v] < d) continue;
for (auto& [u, w] : G[v]) {
if (dist[u] > d + w) {
dist[u] = d + w;
par[u] = v;
pq.emplace(dist[u], u);
}
}
}
return {dist, par};
}
/*
* Breadth-First Search
*/
std::vector<int> bfs(const std::vector<std::vector<int>>& G, int s) {
std::vector<int> dist(G.size(), -1);
dist[s] = 0;
std::queue<int> que;
que.push(s);
while (!que.empty()) {
int v = que.front();
que.pop();
for (int u : G[v]) {
if (dist[u] == -1) {
dist[u] = dist[v] + 1;
que.push(u);
}
}
}
return dist;
}
/*
* Dial's Algorithm
*/
std::vector<int> dial(const std::vector<std::vector<std::pair<int, int>>>& G,
int s, int w) {
std::vector<int> dist(G.size(), std::numeric_limits<int>::max());
dist[s] = 0;
std::vector<std::vector<int>> buckets(w * G.size(), std::vector<int>());
buckets[0].push_back(s);
for (int d = 0; d < (int)buckets.size(); ++d) {
while (!buckets[d].empty()) {
int v = buckets[d].back();
buckets[d].pop_back();
if (dist[v] < d) continue;
for (auto& [u, w] : G[v]) {
if (dist[u] > d + w) {
dist[u] = d + w;
buckets[dist[u]].push_back(u);
}
}
}
}
return dist;
}
#line 4 "test/yosupo/shortest_path.test.cpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
int N, M, s, t;
cin >> N >> M >> s >> t;
vector<vector<pair<int, long long>>> G(N);
for (int i = 0; i < M; ++i) {
int a, b, c;
cin >> a >> b >> c;
G[a].push_back({b, c});
}
auto [dist, par] = shortest_path_tree(G, s);
if (dist[t] >= 1e18) {
cout << -1 << endl;
} else {
vector<int> path;
for (int v = t; v != s; v = par[v]) {
path.push_back(v);
}
path.push_back(s);
reverse(path.begin(), path.end());
cout << dist[t] << " " << path.size() - 1 << endl;
for (int i = 0; i < (int)path.size() - 1; ++i) {
cout << path[i] << " " << path[i + 1] << "\n";
}
}
}