sotanishy's competitive programming library

sotanishy's code snippets for competitive programming

View the Project on GitHub sotanishy/cp-library-cpp

:heavy_check_mark: test/yosupo/vertex_set_path_composite.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/vertex_set_path_composite"

#include <bits/stdc++.h>

#include "../../data-structure/segtree/segment_tree.hpp"
#include "../../math/modint.hpp"
#include "../../tree/hld.hpp"
using namespace std;
using ll = long long;

using mint = Modint<998244353>;

struct AffineMonoid {
    using T = pair<pair<mint, mint>, pair<mint, mint>>;
    static T id() { return {{1, 0}, {1, 0}}; }
    static T op(T a, T b) {
        return {
            {a.first.first * b.first.first,
             a.first.second * b.first.first + b.first.second},
            {b.second.first * a.second.first,
             b.second.second * a.second.first + a.second.second},
        };
    }
};

int main() {
    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);

    int N, Q;
    cin >> N >> Q;
    vector<pair<pair<mint, mint>, pair<mint, mint>>> ab(N);
    for (int i = 0; i < N; ++i) {
        mint a, b;
        cin >> a >> b;
        ab[i] = {{a, b}, {a, b}};
    }
    vector<vector<int>> G(N);
    for (int i = 0; i < N - 1; ++i) {
        int u, v;
        cin >> u >> v;
        G[u].push_back(v);
        G[v].push_back(u);
    }
    HLD<AffineMonoid> hld(G, false);
    SegmentTree<AffineMonoid> st(N);
    auto update = [&](int k, const AffineMonoid::T& p) { st.update(k, p); };
    auto fold = [&](int l, int r) { return st.fold(l, r); };
    auto flip = [&](AffineMonoid::T& a) {
        return make_pair(a.second, a.first);
    };
    for (int i = 0; i < N; ++i) hld.update(i, ab[i], update);
    for (int i = 0; i < Q; ++i) {
        int t;
        cin >> t;
        if (t == 0) {
            int p, c, d;
            cin >> p >> c >> d;
            hld.update(p, {{c, d}, {c, d}}, update);
        } else {
            int u, v, x;
            cin >> u >> v >> x;
            auto a = hld.path_fold(u, v, fold, flip).first;
            cout << a.first * x + a.second << "\n";
        }
    }
}
#line 1 "test/yosupo/vertex_set_path_composite.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/vertex_set_path_composite"

#include <bits/stdc++.h>

#line 3 "data-structure/segtree/segment_tree.hpp"
#include <bit>
#line 5 "data-structure/segtree/segment_tree.hpp"

template <typename M>
class SegmentTree {
    using T = M::T;

   public:
    SegmentTree() = default;
    explicit SegmentTree(int n) : SegmentTree(std::vector<T>(n, M::id())) {}
    explicit SegmentTree(const std::vector<T>& v)
        : size(std::bit_ceil(v.size())), node(2 * size, M::id()) {
        std::ranges::copy(v, node.begin() + size);
        for (int i = size - 1; i > 0; --i) {
            node[i] = M::op(node[2 * i], node[2 * i + 1]);
        }
    }

    T operator[](int k) const { return node[k + size]; }

    void update(int k, const T& x) {
        k += size;
        node[k] = x;
        while (k >>= 1) node[k] = M::op(node[2 * k], node[2 * k + 1]);
    }

    T fold(int l, int r) const {
        T vl = M::id(), vr = M::id();
        for (l += size, r += size; l < r; l >>= 1, r >>= 1) {
            if (l & 1) vl = M::op(vl, node[l++]);
            if (r & 1) vr = M::op(node[--r], vr);
        }
        return M::op(vl, vr);
    }

    template <typename F>
    int find_first(int l, F cond) const {
        T v = M::id();
        for (l += size; l > 0; l >>= 1) {
            if (l & 1) {
                T nv = M::op(v, node[l]);
                if (cond(nv)) {
                    while (l < size) {
                        nv = M::op(v, node[2 * l]);
                        if (cond(nv)) {
                            l = 2 * l;
                        } else {
                            v = nv, l = 2 * l + 1;
                        }
                    }
                    return l + 1 - size;
                }
                v = nv;
                ++l;
            }
        }
        return -1;
    }

    template <typename F>
    int find_last(int r, F cond) const {
        T v = M::id();
        for (r += size; r > 0; r >>= 1) {
            if (r & 1) {
                --r;
                T nv = M::op(node[r], v);
                if (cond(nv)) {
                    while (r < size) {
                        nv = M::op(node[2 * r + 1], v);
                        if (cond(nv)) {
                            r = 2 * r + 1;
                        } else {
                            v = nv, r = 2 * r;
                        }
                    }
                    return r - size;
                }
                v = nv;
            }
        }
        return -1;
    }

   private:
    int size;
    std::vector<T> node;
};
#line 4 "math/modint.hpp"

/**
 * @brief Mod int
 */
template <int m>
class Modint {
    using mint = Modint;
    static_assert(m > 0, "Modulus must be positive");

   public:
    static constexpr int mod() { return m; }

    constexpr Modint(long long y = 0) : x(y >= 0 ? y % m : (y % m + m) % m) {}

    constexpr int val() const { return x; }

    constexpr mint& operator+=(const mint& r) {
        if ((x += r.x) >= m) x -= m;
        return *this;
    }
    constexpr mint& operator-=(const mint& r) {
        if ((x += m - r.x) >= m) x -= m;
        return *this;
    }
    constexpr mint& operator*=(const mint& r) {
        x = static_cast<int>(1LL * x * r.x % m);
        return *this;
    }
    constexpr mint& operator/=(const mint& r) { return *this *= r.inv(); }

    constexpr bool operator==(const mint& r) const { return x == r.x; }

    constexpr mint operator+() const { return *this; }
    constexpr mint operator-() const { return mint(-x); }

    constexpr friend mint operator+(const mint& l, const mint& r) {
        return mint(l) += r;
    }
    constexpr friend mint operator-(const mint& l, const mint& r) {
        return mint(l) -= r;
    }
    constexpr friend mint operator*(const mint& l, const mint& r) {
        return mint(l) *= r;
    }
    constexpr friend mint operator/(const mint& l, const mint& r) {
        return mint(l) /= r;
    }

    constexpr mint inv() const {
        int a = x, b = m, u = 1, v = 0;
        while (b > 0) {
            int t = a / b;
            std::swap(a -= t * b, b);
            std::swap(u -= t * v, v);
        }
        return mint(u);
    }

    constexpr mint pow(long long n) const {
        mint ret(1), mul(x);
        while (n > 0) {
            if (n & 1) ret *= mul;
            mul *= mul;
            n >>= 1;
        }
        return ret;
    }

    friend std::ostream& operator<<(std::ostream& os, const mint& r) {
        return os << r.x;
    }

    friend std::istream& operator>>(std::istream& is, mint& r) {
        long long t;
        is >> t;
        r = mint(t);
        return is;
    }

   private:
    int x;
};
#line 4 "tree/hld.hpp"

template <typename M>
class HLD {
    using T = M::T;

   public:
    HLD() = default;
    HLD(const std::vector<std::vector<int>>& G, bool edge)
        : G(G),
          size(G.size()),
          depth(G.size()),
          par(G.size(), -1),
          in(G.size()),
          out(G.size()),
          head(G.size()),
          heavy(G.size(), -1),
          edge(edge) {
        dfs(0);
        decompose(0, 0);
    }

    template <typename F>
    void update(int v, const T& x, const F& f) const {
        f(in[v], x);
    }

    template <typename F>
    void update_edge(int u, int v, const T& x, const F& f) const {
        if (in[u] > in[v]) std::swap(u, v);
        f(in[v], x);
    }

    template <typename E, typename F>
    void update(int u, int v, const E& x, const F& f) const {
        while (head[u] != head[v]) {
            if (in[head[u]] > in[head[v]]) std::swap(u, v);
            f(in[head[v]], in[v] + 1, x);
            v = par[head[v]];
        }
        if (in[u] > in[v]) std::swap(u, v);
        f(in[u] + edge, in[v] + 1, x);
    }

    template <typename F, typename Flip>
    T path_fold(int u, int v, const F& f, const Flip& flip) const {
        bool flipped = false;
        T resu = M::id(), resv = M::id();
        while (head[u] != head[v]) {
            if (in[head[u]] > in[head[v]]) {
                std::swap(u, v);
                std::swap(resu, resv);
                flipped ^= true;
            }
            T val = f(in[head[v]], in[v] + 1);
            resv = M::op(val, resv);
            v = par[head[v]];
        }
        if (in[u] > in[v]) {
            std::swap(u, v);
            std::swap(resu, resv);
            flipped ^= true;
        }
        T val = f(in[u] + edge, in[v] + 1);
        resv = M::op(val, resv);
        resv = M::op(flip(resu), resv);
        if (flipped) {
            resv = flip(resv);
        }
        return resv;
    }

    template <typename F>
    T path_fold(int u, int v, const F& f) const {
        return path_fold(u, v, f, [&](auto& v) { return v; });
    }

    template <typename F>
    T subtree_fold(int v, const F& f) const {
        return f(in[v] + edge, out[v]);
    }

    int lca(int u, int v) const {
        while (true) {
            if (in[u] > in[v]) std::swap(u, v);
            if (head[u] == head[v]) return u;
            v = par[head[v]];
        }
    }

    int dist(int u, int v) const {
        return depth[u] + depth[v] - 2 * depth[lca(u, v)];
    }

   private:
    std::vector<std::vector<int>> G;
    std::vector<int> size, depth, par, in, out, head, heavy;
    bool edge;
    int cur_pos = 0;

    void dfs(int v) {
        size[v] = 1;
        int max_size = 0;
        for (int c : G[v]) {
            if (c == par[v]) continue;
            par[c] = v;
            depth[c] = depth[v] + 1;
            dfs(c);
            size[v] += size[c];
            if (size[c] > max_size) {
                max_size = size[c];
                heavy[v] = c;
            }
        }
    }

    void decompose(int v, int h) {
        head[v] = h;
        in[v] = cur_pos++;
        if (heavy[v] != -1) decompose(heavy[v], h);
        for (int c : G[v]) {
            if (c != par[v] && c != heavy[v]) decompose(c, c);
        }
        out[v] = cur_pos;
    }
};
#line 8 "test/yosupo/vertex_set_path_composite.test.cpp"
using namespace std;
using ll = long long;

using mint = Modint<998244353>;

struct AffineMonoid {
    using T = pair<pair<mint, mint>, pair<mint, mint>>;
    static T id() { return {{1, 0}, {1, 0}}; }
    static T op(T a, T b) {
        return {
            {a.first.first * b.first.first,
             a.first.second * b.first.first + b.first.second},
            {b.second.first * a.second.first,
             b.second.second * a.second.first + a.second.second},
        };
    }
};

int main() {
    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);

    int N, Q;
    cin >> N >> Q;
    vector<pair<pair<mint, mint>, pair<mint, mint>>> ab(N);
    for (int i = 0; i < N; ++i) {
        mint a, b;
        cin >> a >> b;
        ab[i] = {{a, b}, {a, b}};
    }
    vector<vector<int>> G(N);
    for (int i = 0; i < N - 1; ++i) {
        int u, v;
        cin >> u >> v;
        G[u].push_back(v);
        G[v].push_back(u);
    }
    HLD<AffineMonoid> hld(G, false);
    SegmentTree<AffineMonoid> st(N);
    auto update = [&](int k, const AffineMonoid::T& p) { st.update(k, p); };
    auto fold = [&](int l, int r) { return st.fold(l, r); };
    auto flip = [&](AffineMonoid::T& a) {
        return make_pair(a.second, a.first);
    };
    for (int i = 0; i < N; ++i) hld.update(i, ab[i], update);
    for (int i = 0; i < Q; ++i) {
        int t;
        cin >> t;
        if (t == 0) {
            int p, c, d;
            cin >> p >> c >> d;
            hld.update(p, {{c, d}, {c, d}}, update);
        } else {
            int u, v, x;
            cin >> u >> v >> x;
            auto a = hld.path_fold(u, v, fold, flip).first;
            cout << a.first * x + a.second << "\n";
        }
    }
}
Back to top page