sotanishy's competitive programming library

sotanishy's code snippets for competitive programming

View the Project on GitHub sotanishy/cp-library-cpp

:heavy_check_mark: Shortest Path Algorithms
(graph/shortest_path.hpp)

Description

最短経路問題を解くアルゴリズム詰め合わせ

Bellman-Ford Algorithm

Bellman-Ford のアルゴリズムは,重み付きグラフの単一始点最短経路問題を解くアルゴリズムである.負閉路検出にも用いられる.

Floyd-Warshall Algorithm

Floyd-Warshall のアルゴリズムは,重み付きグラフの全点対最短経路問題を解くアルゴリズムである.負閉路検出にも用いられる.

Dijkstra’s Algorithm

Dijkstra のアルゴリズムは,負辺のない重み付きグラフの単一始点最短経路問題を解くアルゴリズムである.

NOT VERIFIED

幅優先探索は,重みがすべて1のグラフの単一始点最短経路問題を解くアルゴリズムである.

Dial’s Algorithm

NOT VERIFIED

Dial のアルゴリズムは,負辺のない重み付きグラフの単一始点最短経路問題を解くアルゴリズムである.辺の重みが整数であり,上限が小さいときに Dijkstra のアルゴリズムより高速に動作する.

Required by

Verified with

Code

#pragma once
#include <limits>
#include <queue>
#include <tuple>
#include <utility>
#include <vector>

/*
 * Bellman-Ford Algorithm
 */
template <typename T>
std::vector<T> bellman_ford(const std::vector<std::tuple<int, int, T>>& G,
                            int V, int s) {
    constexpr T INF = std::numeric_limits<T>::max();
    std::vector<T> dist(V, INF);
    dist[s] = 0;
    for (int i = 0; i < V; ++i) {
        for (auto& [s, t, w] : G) {
            if (dist[s] != INF && dist[t] > dist[s] + w) {
                dist[t] = dist[s] + w;
                if (i == V - 1) return {};
            }
        }
    }
    return dist;
}

/*
 * Floyd-Warshall Algorithm
 */
template <typename T>
void floyd_warshall(std::vector<std::vector<T>>& dist) {
    const int V = dist.size();
    for (int k = 0; k < V; ++k) {
        for (int i = 0; i < V; ++i) {
            for (int j = 0; j < V; ++j) {
                dist[i][j] = std::min(dist[i][j], dist[i][k] + dist[k][j]);
            }
        }
    }
}

/*
 * Dijkstra's Algorithm
 */
template <typename T>
std::vector<T> dijkstra(const std::vector<std::vector<std::pair<int, T>>>& G,
                        int s) {
    std::vector<T> dist(G.size(), std::numeric_limits<T>::max());
    dist[s] = 0;
    using P = std::pair<T, int>;
    std::priority_queue<P, std::vector<P>, std::greater<P>> pq;
    pq.emplace(0, s);

    while (!pq.empty()) {
        auto [d, v] = pq.top();
        pq.pop();
        if (dist[v] < d) continue;
        for (auto& [u, w] : G[v]) {
            if (dist[u] > d + w) {
                dist[u] = d + w;
                pq.emplace(dist[u], u);
            }
        }
    }

    return dist;
}

template <typename T>
std::pair<std::vector<T>, std::vector<int>> shortest_path_tree(
    const std::vector<std::vector<std::pair<int, T>>>& G, int s) {
    std::vector<T> dist(G.size(), std::numeric_limits<T>::max());
    std::vector<int> par(G.size(), -1);
    dist[s] = 0;
    using P = std::pair<T, int>;
    std::priority_queue<P, std::vector<P>, std::greater<P>> pq;
    pq.emplace(0, s);

    while (!pq.empty()) {
        auto [d, v] = pq.top();
        pq.pop();
        if (dist[v] < d) continue;
        for (auto& [u, w] : G[v]) {
            if (dist[u] > d + w) {
                dist[u] = d + w;
                par[u] = v;
                pq.emplace(dist[u], u);
            }
        }
    }

    return {dist, par};
}

/*
 * Breadth-First Search
 */
std::vector<int> bfs(const std::vector<std::vector<int>>& G, int s) {
    std::vector<int> dist(G.size(), -1);
    dist[s] = 0;
    std::queue<int> que;
    que.push(s);

    while (!que.empty()) {
        int v = que.front();
        que.pop();
        for (int u : G[v]) {
            if (dist[u] == -1) {
                dist[u] = dist[v] + 1;
                que.push(u);
            }
        }
    }

    return dist;
}

/*
 * Dial's Algorithm
 */
std::vector<int> dial(const std::vector<std::vector<std::pair<int, int>>>& G,
                      int s, int w) {
    std::vector<int> dist(G.size(), std::numeric_limits<int>::max());
    dist[s] = 0;
    std::vector<std::vector<int>> buckets(w * G.size(), std::vector<int>());
    buckets[0].push_back(s);

    for (int d = 0; d < (int)buckets.size(); ++d) {
        while (!buckets[d].empty()) {
            int v = buckets[d].back();
            buckets[d].pop_back();
            if (dist[v] < d) continue;
            for (auto& [u, w] : G[v]) {
                if (dist[u] > d + w) {
                    dist[u] = d + w;
                    buckets[dist[u]].push_back(u);
                }
            }
        }
    }
    return dist;
}
#line 2 "graph/shortest_path.hpp"
#include <limits>
#include <queue>
#include <tuple>
#include <utility>
#include <vector>

/*
 * Bellman-Ford Algorithm
 */
template <typename T>
std::vector<T> bellman_ford(const std::vector<std::tuple<int, int, T>>& G,
                            int V, int s) {
    constexpr T INF = std::numeric_limits<T>::max();
    std::vector<T> dist(V, INF);
    dist[s] = 0;
    for (int i = 0; i < V; ++i) {
        for (auto& [s, t, w] : G) {
            if (dist[s] != INF && dist[t] > dist[s] + w) {
                dist[t] = dist[s] + w;
                if (i == V - 1) return {};
            }
        }
    }
    return dist;
}

/*
 * Floyd-Warshall Algorithm
 */
template <typename T>
void floyd_warshall(std::vector<std::vector<T>>& dist) {
    const int V = dist.size();
    for (int k = 0; k < V; ++k) {
        for (int i = 0; i < V; ++i) {
            for (int j = 0; j < V; ++j) {
                dist[i][j] = std::min(dist[i][j], dist[i][k] + dist[k][j]);
            }
        }
    }
}

/*
 * Dijkstra's Algorithm
 */
template <typename T>
std::vector<T> dijkstra(const std::vector<std::vector<std::pair<int, T>>>& G,
                        int s) {
    std::vector<T> dist(G.size(), std::numeric_limits<T>::max());
    dist[s] = 0;
    using P = std::pair<T, int>;
    std::priority_queue<P, std::vector<P>, std::greater<P>> pq;
    pq.emplace(0, s);

    while (!pq.empty()) {
        auto [d, v] = pq.top();
        pq.pop();
        if (dist[v] < d) continue;
        for (auto& [u, w] : G[v]) {
            if (dist[u] > d + w) {
                dist[u] = d + w;
                pq.emplace(dist[u], u);
            }
        }
    }

    return dist;
}

template <typename T>
std::pair<std::vector<T>, std::vector<int>> shortest_path_tree(
    const std::vector<std::vector<std::pair<int, T>>>& G, int s) {
    std::vector<T> dist(G.size(), std::numeric_limits<T>::max());
    std::vector<int> par(G.size(), -1);
    dist[s] = 0;
    using P = std::pair<T, int>;
    std::priority_queue<P, std::vector<P>, std::greater<P>> pq;
    pq.emplace(0, s);

    while (!pq.empty()) {
        auto [d, v] = pq.top();
        pq.pop();
        if (dist[v] < d) continue;
        for (auto& [u, w] : G[v]) {
            if (dist[u] > d + w) {
                dist[u] = d + w;
                par[u] = v;
                pq.emplace(dist[u], u);
            }
        }
    }

    return {dist, par};
}

/*
 * Breadth-First Search
 */
std::vector<int> bfs(const std::vector<std::vector<int>>& G, int s) {
    std::vector<int> dist(G.size(), -1);
    dist[s] = 0;
    std::queue<int> que;
    que.push(s);

    while (!que.empty()) {
        int v = que.front();
        que.pop();
        for (int u : G[v]) {
            if (dist[u] == -1) {
                dist[u] = dist[v] + 1;
                que.push(u);
            }
        }
    }

    return dist;
}

/*
 * Dial's Algorithm
 */
std::vector<int> dial(const std::vector<std::vector<std::pair<int, int>>>& G,
                      int s, int w) {
    std::vector<int> dist(G.size(), std::numeric_limits<int>::max());
    dist[s] = 0;
    std::vector<std::vector<int>> buckets(w * G.size(), std::vector<int>());
    buckets[0].push_back(s);

    for (int d = 0; d < (int)buckets.size(); ++d) {
        while (!buckets[d].empty()) {
            int v = buckets[d].back();
            buckets[d].pop_back();
            if (dist[v] < d) continue;
            for (auto& [u, w] : G[v]) {
                if (dist[u] > d + w) {
                    dist[u] = d + w;
                    buckets[dist[u]].push_back(u);
                }
            }
        }
    }
    return dist;
}
Back to top page