sotanishy's code snippets for competitive programming
#include "graph/shortest_path.hpp"
最短経路問題を解くアルゴリズム詰め合わせ
Bellman-Ford のアルゴリズムは,重み付きグラフの単一始点最短経路問題を解くアルゴリズムである.負閉路検出にも用いられる.
vector<T> bellman_ford(vector<tuple<int, int, T>> G, int V, int s)
Floyd-Warshall のアルゴリズムは,重み付きグラフの全点対最短経路問題を解くアルゴリズムである.負閉路検出にも用いられる.
void floyd_warshall(vector<vector<T>> dist)
Dijkstra のアルゴリズムは,負辺のない重み付きグラフの単一始点最短経路問題を解くアルゴリズムである.
vector<T> dijkstra(vector<vector<pair<int, T>>> G, int s)
pair<vector<T>, vector<T>> shortest_path_tree(vector<vector<pair<int, T>>> G, int s)
NOT VERIFIED
幅優先探索は,重みがすべて1のグラフの単一始点最短経路問題を解くアルゴリズムである.
vector<T> bfs(vector<vector<int>> G, int s)
NOT VERIFIED
Dial のアルゴリズムは,負辺のない重み付きグラフの単一始点最短経路問題を解くアルゴリズムである.辺の重みが整数であり,上限が小さいときに Dijkstra のアルゴリズムより高速に動作する.
vector<int> dial(vector<vector<pair<int, int>>> G, int s, int w)
#pragma once
#include <limits>
#include <queue>
#include <tuple>
#include <utility>
#include <vector>
/*
* Bellman-Ford Algorithm
*/
template <typename T>
std::vector<T> bellman_ford(const std::vector<std::tuple<int, int, T>>& G,
int V, int s) {
constexpr T INF = std::numeric_limits<T>::max();
std::vector<T> dist(V, INF);
dist[s] = 0;
for (int i = 0; i < V; ++i) {
for (auto& [s, t, w] : G) {
if (dist[s] != INF && dist[t] > dist[s] + w) {
dist[t] = dist[s] + w;
if (i == V - 1) return {};
}
}
}
return dist;
}
/*
* Floyd-Warshall Algorithm
*/
template <typename T>
void floyd_warshall(std::vector<std::vector<T>>& dist) {
const int V = dist.size();
for (int k = 0; k < V; ++k) {
for (int i = 0; i < V; ++i) {
for (int j = 0; j < V; ++j) {
dist[i][j] = std::min(dist[i][j], dist[i][k] + dist[k][j]);
}
}
}
}
/*
* Dijkstra's Algorithm
*/
template <typename T>
std::vector<T> dijkstra(const std::vector<std::vector<std::pair<int, T>>>& G,
int s) {
std::vector<T> dist(G.size(), std::numeric_limits<T>::max());
dist[s] = 0;
using P = std::pair<T, int>;
std::priority_queue<P, std::vector<P>, std::greater<P>> pq;
pq.emplace(0, s);
while (!pq.empty()) {
auto [d, v] = pq.top();
pq.pop();
if (dist[v] < d) continue;
for (auto& [u, w] : G[v]) {
if (dist[u] > d + w) {
dist[u] = d + w;
pq.emplace(dist[u], u);
}
}
}
return dist;
}
template <typename T>
std::pair<std::vector<T>, std::vector<int>> shortest_path_tree(
const std::vector<std::vector<std::pair<int, T>>>& G, int s) {
std::vector<T> dist(G.size(), std::numeric_limits<T>::max());
std::vector<int> par(G.size(), -1);
dist[s] = 0;
using P = std::pair<T, int>;
std::priority_queue<P, std::vector<P>, std::greater<P>> pq;
pq.emplace(0, s);
while (!pq.empty()) {
auto [d, v] = pq.top();
pq.pop();
if (dist[v] < d) continue;
for (auto& [u, w] : G[v]) {
if (dist[u] > d + w) {
dist[u] = d + w;
par[u] = v;
pq.emplace(dist[u], u);
}
}
}
return {dist, par};
}
/*
* Breadth-First Search
*/
std::vector<int> bfs(const std::vector<std::vector<int>>& G, int s) {
std::vector<int> dist(G.size(), -1);
dist[s] = 0;
std::queue<int> que;
que.push(s);
while (!que.empty()) {
int v = que.front();
que.pop();
for (int u : G[v]) {
if (dist[u] == -1) {
dist[u] = dist[v] + 1;
que.push(u);
}
}
}
return dist;
}
/*
* Dial's Algorithm
*/
std::vector<int> dial(const std::vector<std::vector<std::pair<int, int>>>& G,
int s, int w) {
std::vector<int> dist(G.size(), std::numeric_limits<int>::max());
dist[s] = 0;
std::vector<std::vector<int>> buckets(w * G.size(), std::vector<int>());
buckets[0].push_back(s);
for (int d = 0; d < (int)buckets.size(); ++d) {
while (!buckets[d].empty()) {
int v = buckets[d].back();
buckets[d].pop_back();
if (dist[v] < d) continue;
for (auto& [u, w] : G[v]) {
if (dist[u] > d + w) {
dist[u] = d + w;
buckets[dist[u]].push_back(u);
}
}
}
}
return dist;
}
#line 2 "graph/shortest_path.hpp"
#include <limits>
#include <queue>
#include <tuple>
#include <utility>
#include <vector>
/*
* Bellman-Ford Algorithm
*/
template <typename T>
std::vector<T> bellman_ford(const std::vector<std::tuple<int, int, T>>& G,
int V, int s) {
constexpr T INF = std::numeric_limits<T>::max();
std::vector<T> dist(V, INF);
dist[s] = 0;
for (int i = 0; i < V; ++i) {
for (auto& [s, t, w] : G) {
if (dist[s] != INF && dist[t] > dist[s] + w) {
dist[t] = dist[s] + w;
if (i == V - 1) return {};
}
}
}
return dist;
}
/*
* Floyd-Warshall Algorithm
*/
template <typename T>
void floyd_warshall(std::vector<std::vector<T>>& dist) {
const int V = dist.size();
for (int k = 0; k < V; ++k) {
for (int i = 0; i < V; ++i) {
for (int j = 0; j < V; ++j) {
dist[i][j] = std::min(dist[i][j], dist[i][k] + dist[k][j]);
}
}
}
}
/*
* Dijkstra's Algorithm
*/
template <typename T>
std::vector<T> dijkstra(const std::vector<std::vector<std::pair<int, T>>>& G,
int s) {
std::vector<T> dist(G.size(), std::numeric_limits<T>::max());
dist[s] = 0;
using P = std::pair<T, int>;
std::priority_queue<P, std::vector<P>, std::greater<P>> pq;
pq.emplace(0, s);
while (!pq.empty()) {
auto [d, v] = pq.top();
pq.pop();
if (dist[v] < d) continue;
for (auto& [u, w] : G[v]) {
if (dist[u] > d + w) {
dist[u] = d + w;
pq.emplace(dist[u], u);
}
}
}
return dist;
}
template <typename T>
std::pair<std::vector<T>, std::vector<int>> shortest_path_tree(
const std::vector<std::vector<std::pair<int, T>>>& G, int s) {
std::vector<T> dist(G.size(), std::numeric_limits<T>::max());
std::vector<int> par(G.size(), -1);
dist[s] = 0;
using P = std::pair<T, int>;
std::priority_queue<P, std::vector<P>, std::greater<P>> pq;
pq.emplace(0, s);
while (!pq.empty()) {
auto [d, v] = pq.top();
pq.pop();
if (dist[v] < d) continue;
for (auto& [u, w] : G[v]) {
if (dist[u] > d + w) {
dist[u] = d + w;
par[u] = v;
pq.emplace(dist[u], u);
}
}
}
return {dist, par};
}
/*
* Breadth-First Search
*/
std::vector<int> bfs(const std::vector<std::vector<int>>& G, int s) {
std::vector<int> dist(G.size(), -1);
dist[s] = 0;
std::queue<int> que;
que.push(s);
while (!que.empty()) {
int v = que.front();
que.pop();
for (int u : G[v]) {
if (dist[u] == -1) {
dist[u] = dist[v] + 1;
que.push(u);
}
}
}
return dist;
}
/*
* Dial's Algorithm
*/
std::vector<int> dial(const std::vector<std::vector<std::pair<int, int>>>& G,
int s, int w) {
std::vector<int> dist(G.size(), std::numeric_limits<int>::max());
dist[s] = 0;
std::vector<std::vector<int>> buckets(w * G.size(), std::vector<int>());
buckets[0].push_back(s);
for (int d = 0; d < (int)buckets.size(); ++d) {
while (!buckets[d].empty()) {
int v = buckets[d].back();
buckets[d].pop_back();
if (dist[v] < d) continue;
for (auto& [u, w] : G[v]) {
if (dist[u] > d + w) {
dist[u] = d + w;
buckets[dist[u]].push_back(u);
}
}
}
}
return dist;
}