sotanishy's code snippets for competitive programming
#define PROBLEM "https://judge.yosupo.jp/problem/hafnian_of_matrix"
#include <bits/stdc++.h>
#include "../../math/linalg/hafnian.hpp"
#include "../../math/modint.hpp"
using namespace std;
using mint = Modint<998244353>;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
int N;
cin >> N;
vector a(N, vector<mint>(N));
for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) cin >> a[i][j];
}
cout << hafnian<mint, 19>(a) << endl;
}
#line 1 "test/yosupo/hafnian_of_matrix.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/hafnian_of_matrix"
#include <bits/stdc++.h>
#line 4 "math/linalg/hafnian.hpp"
#line 6 "math/set/set_power_series.hpp"
#line 4 "math/set/subset_convolution.hpp"
#line 2 "math/set/zeta_moebius_transform.hpp"
#include <bit>
#line 5 "math/set/zeta_moebius_transform.hpp"
template <typename T>
void superset_fzt(std::vector<T>& a) {
assert(std::has_single_bit(a.size()));
const int n = a.size();
for (int i = 1; i < n; i <<= 1) {
for (int j = 0; j < n; ++j) {
if (!(j & i)) a[j] += a[j | i];
}
}
}
template <typename T>
void superset_fmt(std::vector<T>& a) {
assert(std::has_single_bit(a.size()));
const int n = a.size();
for (int i = 1; i < n; i <<= 1) {
for (int j = 0; j < n; ++j) {
if (!(j & i)) a[j] -= a[j | i];
}
}
}
template <typename T>
void subset_fzt(std::vector<T>& a) {
assert(std::has_single_bit(a.size()));
const int n = a.size();
for (int i = 1; i < n; i <<= 1) {
for (int j = 0; j < n; ++j) {
if (!(j & i)) a[j | i] += a[j];
}
}
}
template <typename T>
void subset_fmt(std::vector<T>& a) {
assert(std::has_single_bit(a.size()));
const int n = a.size();
for (int i = 1; i < n; i <<= 1) {
for (int j = 0; j < n; ++j) {
if (!(j & i)) a[j | i] -= a[j];
}
}
}
#line 6 "math/set/subset_convolution.hpp"
template <typename T, std::size_t N>
std::array<T, N>& operator+=(std::array<T, N>& lhs,
const std::array<T, N>& rhs) {
for (int i = 0; i < (int)N; ++i) lhs[i] += rhs[i];
return lhs;
}
template <typename T, std::size_t N>
std::array<T, N>& operator-=(std::array<T, N>& lhs,
const std::array<T, N>& rhs) {
for (int i = 0; i < (int)N; ++i) lhs[i] -= rhs[i];
return lhs;
}
template <typename T, int N>
std::vector<T> subset_convolution(const std::vector<T>& a,
const std::vector<T>& b) {
using Poly = std::array<T, N + 1>;
const int n = std::bit_ceil(std::max(a.size(), b.size()));
// convert to polynomials
std::vector<Poly> pa(n), pb(n);
for (int i = 0; i < (int)a.size(); ++i) {
pa[i][std::popcount((unsigned int)i)] = a[i];
}
for (int i = 0; i < (int)b.size(); ++i) {
pb[i][std::popcount((unsigned int)i)] = b[i];
}
// bitwise or convolution
subset_fzt(pa);
subset_fzt(pb);
for (int i = 0; i < n; ++i) {
Poly pc;
for (int j = 0; j <= N; ++j) {
for (int k = 0; k <= N - j; ++k) {
pc[j + k] += pa[i][j] * pb[i][k];
}
}
pa[i].swap(pc);
}
subset_fmt(pa);
// convert back
std::vector<T> ret(n);
for (int i = 0; i < n; ++i) {
ret[i] = pa[i][std::popcount((unsigned int)i)];
}
return ret;
}
#line 8 "math/set/set_power_series.hpp"
/**
* @brief Set Power Series
*/
template <typename mint, int N>
class SetPowerSeries : public std::vector<mint> {
using SPS = SetPowerSeries<mint, N>;
using Poly = std::array<mint, N + 1>;
public:
using std::vector<mint>::vector;
using std::vector<mint>::operator=;
// -- binary operation with scalar ---
SPS& operator+=(const mint& rhs) {
if (this->empty()) this->resize(1);
(*this)[0] += rhs;
return *this;
}
SPS& operator-=(const mint& rhs) {
if (this->empty()) this->resize(1);
(*this)[0] -= rhs;
return *this;
}
SPS& operator*=(const mint& rhs) {
for (auto& x : *this) x *= rhs;
return *this;
}
SPS& operator/=(const mint& rhs) { return *this *= rhs.inv(); }
SPS operator+(const mint& rhs) const { return SPS(*this) += rhs; }
SPS operator-(const mint& rhs) const { return SPS(*this) -= rhs; }
SPS operator*(const mint& rhs) const { return SPS(*this) *= rhs; }
SPS operator/(const mint& rhs) const { return SPS(*this) /= rhs; }
// --- binary operation with SPS ---
SPS& operator+=(const SPS& rhs) {
if (this->size() < rhs.size()) this->resize(rhs.size());
for (int i = 0; i < (int)rhs.size(); ++i) (*this)[i] += rhs[i];
return *this;
}
SPS& operator-=(const SPS& rhs) {
if (this->size() < rhs.size()) this->resize(rhs.size());
for (int i = 0; i < (int)rhs.size(); ++i) (*this)[i] -= rhs[i];
return *this;
}
SPS& operator*=(const SPS& rhs) {
*this = subset_convolution<mint, N>(*this, rhs);
return *this;
}
SPS operator+(const SPS& rhs) const { return SPS(*this) += rhs; }
SPS operator-(const SPS& rhs) const { return SPS(*this) -= rhs; }
SPS operator*(const SPS& rhs) const { return SPS(*this) *= rhs; }
// --- compositions ---
SPS exp() const {
assert((*this)[0] == mint(0));
const int n = std::bit_width(std::bit_ceil(this->size())) - 1;
SPS res(1 << n);
res[0] = 1;
for (int i = 0; i < n; ++i) {
SPS a(this->begin() + (1 << i), this->begin() + (1 << (i + 1)));
SPS b(res.begin(), res.begin() + (1 << i));
a *= b;
std::copy(a.begin(), a.end(), res.begin() + (1 << i));
}
return res;
}
};
#line 6 "math/linalg/hafnian.hpp"
template <typename T, int N>
T hafnian(std::vector<std::vector<T>> mat) {
const int n = mat.size();
assert(n % 2 == 0);
const int n2 = n / 2;
// cyc[S]: number of alternating cycles using all edges in S
SetPowerSeries<T, N> cyc(1 << n2);
for (int i = 0; i < n2; ++i) {
int ui = 2 * i, vi = 2 * i + 1;
// ui-vi=ui
cyc[1 << i] += mat[ui][vi];
// dp[S][v]: number of alternating paths between ui and v
// using all edges in S
std::vector dp(1 << i, std::vector<T>(2 * i));
for (int j = 0; j < i; ++j) {
int uj = 2 * j, vj = 2 * j + 1;
dp[1 << j][uj] += mat[ui][vj]; // ui-vj=uj
dp[1 << j][vj] += mat[ui][uj]; // ui-uj=vj
}
for (int S = 0; S < (1 << i); ++S) {
for (int j = 0; j < i; ++j) {
int uj = 2 * j, vj = 2 * j + 1;
cyc[S | (1 << i)] +=
dp[S][uj] * mat[vi][uj]; // ui-...=uj-vi=ui
cyc[S | (1 << i)] +=
dp[S][vj] * mat[vi][vj]; // ui-...=vj-vi=ui
for (int k = 0; k < i; ++k) {
if (!(S >> k & 1)) {
int uk = 2 * k, vk = 2 * k + 1;
int nS = S | (1 << k);
dp[nS][uk] +=
dp[S][uj] * mat[uj][vk]; // ui-...=uj-vk=uk
dp[nS][uk] +=
dp[S][vj] * mat[vj][vk]; // ui-...=vj-vk=uk
dp[nS][vk] +=
dp[S][uj] * mat[uj][uk]; // ui-...=uj-uk=vk
dp[nS][vk] +=
dp[S][vj] * mat[vj][uk]; // ui-...=vj-uk=vk
}
}
}
}
}
return cyc.exp().back();
}
#line 4 "math/modint.hpp"
/**
* @brief Mod int
*/
template <int m>
class Modint {
using mint = Modint;
static_assert(m > 0, "Modulus must be positive");
public:
static constexpr int mod() { return m; }
constexpr Modint(long long y = 0) : x(y >= 0 ? y % m : (y % m + m) % m) {}
constexpr int val() const { return x; }
constexpr mint& operator+=(const mint& r) {
if ((x += r.x) >= m) x -= m;
return *this;
}
constexpr mint& operator-=(const mint& r) {
if ((x += m - r.x) >= m) x -= m;
return *this;
}
constexpr mint& operator*=(const mint& r) {
x = static_cast<int>(1LL * x * r.x % m);
return *this;
}
constexpr mint& operator/=(const mint& r) { return *this *= r.inv(); }
constexpr bool operator==(const mint& r) const { return x == r.x; }
constexpr mint operator+() const { return *this; }
constexpr mint operator-() const { return mint(-x); }
constexpr friend mint operator+(const mint& l, const mint& r) {
return mint(l) += r;
}
constexpr friend mint operator-(const mint& l, const mint& r) {
return mint(l) -= r;
}
constexpr friend mint operator*(const mint& l, const mint& r) {
return mint(l) *= r;
}
constexpr friend mint operator/(const mint& l, const mint& r) {
return mint(l) /= r;
}
constexpr mint inv() const {
int a = x, b = m, u = 1, v = 0;
while (b > 0) {
int t = a / b;
std::swap(a -= t * b, b);
std::swap(u -= t * v, v);
}
return mint(u);
}
constexpr mint pow(long long n) const {
mint ret(1), mul(x);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend std::ostream& operator<<(std::ostream& os, const mint& r) {
return os << r.x;
}
friend std::istream& operator>>(std::istream& is, mint& r) {
long long t;
is >> t;
r = mint(t);
return is;
}
private:
int x;
};
#line 7 "test/yosupo/hafnian_of_matrix.test.cpp"
using namespace std;
using mint = Modint<998244353>;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
int N;
cin >> N;
vector a(N, vector<mint>(N));
for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) cin >> a[i][j];
}
cout << hafnian<mint, 19>(a) << endl;
}